diff --git a/Marlin/src/feature/bedlevel/abl/abl.cpp b/Marlin/src/feature/bedlevel/abl/abl.cpp index 59bf4fbeb..672a03c3d 100644 --- a/Marlin/src/feature/bedlevel/abl/abl.cpp +++ b/Marlin/src/feature/bedlevel/abl/abl.cpp @@ -366,6 +366,7 @@ float bilinear_z_offset(const float raw[XYZ]) { * splitting the move where it crosses grid borders. */ void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits, uint16_t y_splits) { + // Get current and destination cells for this line int cx1 = CELL_INDEX(X, current_position[X_AXIS]), cy1 = CELL_INDEX(Y, current_position[Y_AXIS]), cx2 = CELL_INDEX(X, destination[X_AXIS]), @@ -375,8 +376,8 @@ float bilinear_z_offset(const float raw[XYZ]) { cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2); cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2); + // Start and end in the same cell? No split needed. if (cx1 == cx2 && cy1 == cy2) { - // Start and end on same mesh square buffer_line_to_destination(fr_mm_s); set_current_from_destination(); return; @@ -385,25 +386,30 @@ float bilinear_z_offset(const float raw[XYZ]) { #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) float normalized_dist, end[XYZE]; - - // Split at the left/front border of the right/top square const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); + + // Crosses on the X and not already split on this X? + // The x_splits flags are insurance against rounding errors. if (cx2 != cx1 && TEST(x_splits, gcx)) { + // Split on the X grid line + CBI(x_splits, gcx); COPY(end, destination); destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx; normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = LINE_SEGMENT_END(Y); - CBI(x_splits, gcx); } + // Crosses on the Y and not already split on this Y? else if (cy2 != cy1 && TEST(y_splits, gcy)) { + // Split on the Y grid line + CBI(y_splits, gcy); COPY(end, destination); destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy; normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = LINE_SEGMENT_END(X); - CBI(y_splits, gcy); } else { - // Already split on a border + // Must already have been split on these border(s) + // This should be a rare case. buffer_line_to_destination(fr_mm_s); set_current_from_destination(); return; diff --git a/Marlin/src/feature/bedlevel/mbl/mesh_bed_leveling.cpp b/Marlin/src/feature/bedlevel/mbl/mesh_bed_leveling.cpp index 7911f6cec..08235b524 100644 --- a/Marlin/src/feature/bedlevel/mbl/mesh_bed_leveling.cpp +++ b/Marlin/src/feature/bedlevel/mbl/mesh_bed_leveling.cpp @@ -59,6 +59,7 @@ * splitting the move where it crosses mesh borders. */ void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits, uint8_t y_splits) { + // Get current and destination cells for this line int cx1 = mbl.cell_index_x(current_position[X_AXIS]), cy1 = mbl.cell_index_y(current_position[Y_AXIS]), cx2 = mbl.cell_index_x(destination[X_AXIS]), @@ -68,8 +69,8 @@ NOMORE(cx2, GRID_MAX_POINTS_X - 2); NOMORE(cy2, GRID_MAX_POINTS_Y - 2); + // Start and end in the same cell? No split needed. if (cx1 == cx2 && cy1 == cy2) { - // Start and end on same mesh square buffer_line_to_destination(fr_mm_s); set_current_from_destination(); return; @@ -78,25 +79,30 @@ #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) float normalized_dist, end[XYZE]; - - // Split at the left/front border of the right/top square const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); + + // Crosses on the X and not already split on this X? + // The x_splits flags are insurance against rounding errors. if (cx2 != cx1 && TEST(x_splits, gcx)) { + // Split on the X grid line + CBI(x_splits, gcx); COPY(end, destination); destination[X_AXIS] = mbl.index_to_xpos[gcx]; normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = MBL_SEGMENT_END(Y); - CBI(x_splits, gcx); } + // Crosses on the Y and not already split on this Y? else if (cy2 != cy1 && TEST(y_splits, gcy)) { + // Split on the Y grid line + CBI(y_splits, gcy); COPY(end, destination); destination[Y_AXIS] = mbl.index_to_ypos[gcy]; normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = MBL_SEGMENT_END(X); - CBI(y_splits, gcy); } else { - // Already split on a border + // Must already have been split on these border(s) + // This should be a rare case. buffer_line_to_destination(fr_mm_s); set_current_from_destination(); return; diff --git a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp index d04ec3dde..466bf463a 100644 --- a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp +++ b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp @@ -475,30 +475,17 @@ // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic, // so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first. - inline void _O2 ubl_buffer_segment_raw(const float &rx, const float &ry, const float rz, const float &e, const float &fr) { + inline void _O2 ubl_buffer_segment_raw(const float raw[XYZE], const float &fr) { #if ENABLED(DELTA) // apply delta inverse_kinematics - const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS] - - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx, - delta_tower[A_AXIS][Y_AXIS] - ry )); - - const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS] - - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx, - delta_tower[B_AXIS][Y_AXIS] - ry )); - - const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS] - - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx, - delta_tower[C_AXIS][Y_AXIS] - ry )); - - planner._buffer_line(delta_A, delta_B, delta_C, e, fr, active_extruder); + DELTA_RAW_IK(); + planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder); #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw) - const float lseg[XYZ] = { rx, ry, rz }; - - inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ] - // should move the feedrate scaling to scara inverse_kinematics + inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE] + // should move the feedrate scaling to scara inverse_kinematics const float adiff = FABS(delta[A_AXIS] - scara_oldA), bdiff = FABS(delta[B_AXIS] - scara_oldB); @@ -506,11 +493,11 @@ scara_oldB = delta[B_AXIS]; float s_feedrate = max(adiff, bdiff) * scara_feed_factor; - planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], e, s_feedrate, active_extruder); + planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder); #else // CARTESIAN - planner._buffer_line(rx, ry, rz, e, fr, active_extruder); + planner._buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder); #endif @@ -528,12 +515,14 @@ if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary return true; // did not move, so current_position still accurate - const float tot_dx = rtarget[X_AXIS] - current_position[X_AXIS], - tot_dy = rtarget[Y_AXIS] - current_position[Y_AXIS], - tot_dz = rtarget[Z_AXIS] - current_position[Z_AXIS], - tot_de = rtarget[E_AXIS] - current_position[E_AXIS]; + const float total[XYZE] = { + rtarget[X_AXIS] - current_position[X_AXIS], + rtarget[Y_AXIS] - current_position[Y_AXIS], + rtarget[Z_AXIS] - current_position[Z_AXIS], + rtarget[E_AXIS] - current_position[E_AXIS] + }; - const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance + const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance #if IS_KINEMATIC const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate @@ -553,41 +542,30 @@ scara_oldB = stepper.get_axis_position_degrees(B_AXIS); #endif - const float seg_dx = tot_dx * inv_segments, - seg_dy = tot_dy * inv_segments, - seg_dz = tot_dz * inv_segments, - seg_de = tot_de * inv_segments; + const float diff[XYZE] = { + total[X_AXIS] * inv_segments, + total[Y_AXIS] * inv_segments, + total[Z_AXIS] * inv_segments, + total[E_AXIS] * inv_segments + }; // Note that E segment distance could vary slightly as z mesh height // changes for each segment, but small enough to ignore. - float seg_rx = current_position[X_AXIS], - seg_ry = current_position[Y_AXIS], - seg_rz = current_position[Z_AXIS], - seg_le = current_position[E_AXIS]; + float raw[XYZE] = { + current_position[X_AXIS], + current_position[Y_AXIS], + current_position[Z_AXIS], + current_position[E_AXIS] + }; // Only compute leveling per segment if ubl active and target below z_fade_height. - if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling - - do { - - if (--segments) { // not the last segment - seg_rx += seg_dx; - seg_ry += seg_dy; - seg_rz += seg_dz; - seg_le += seg_de; - } else { // last segment, use exact destination - seg_rx = rtarget[X_AXIS]; - seg_ry = rtarget[Y_AXIS]; - seg_rz = rtarget[Z_AXIS]; - seg_le = rtarget[E_AXIS]; - } - - ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz, seg_le, feedrate); - - } while (segments); - + while (--segments) { + LOOP_XYZE(i) raw[i] += diff[i]; + ubl_buffer_segment_raw(raw, feedrate); + } + ubl_buffer_segment_raw(rtarget, feedrate); return false; // moved but did not set_current_from_destination(); } @@ -598,10 +576,7 @@ #endif // increment to first segment destination - seg_rx += seg_dx; - seg_ry += seg_dy; - seg_rz += seg_dz; - seg_le += seg_de; + LOOP_XYZE(i) raw[i] += diff[i]; for(;;) { // for each mesh cell encountered during the move @@ -612,8 +587,8 @@ // in top of loop and again re-find same adjacent cell and use it, just less efficient // for mesh inset area. - int8_t cell_xi = (seg_rx - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), - cell_yi = (seg_ry - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); + int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), + cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); @@ -631,8 +606,8 @@ if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points - float cx = seg_rx - x0, // cell-relative x and y - cy = seg_ry - y0; + float cx = raw[X_AXIS] - x0, // cell-relative x and y + cy = raw[Y_AXIS] - y0; const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right) z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right) @@ -650,40 +625,34 @@ // and the z_cxym slope will change, both as a function of cx within the cell, and // each change by a constant for fixed segment lengths. - const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0 - z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym + const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0 + z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym for(;;) { // for all segments within this mesh cell - float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy + if (--segments == 0) // if this is last segment, use rtarget for exact + COPY(raw, rtarget); + float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height #endif - if (--segments == 0) { // if this is last segment, use rtarget for exact - seg_rx = rtarget[X_AXIS]; - seg_ry = rtarget[Y_AXIS]; - seg_rz = rtarget[Z_AXIS]; - seg_le = rtarget[E_AXIS]; - } - - ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate); + const float z = raw[Z_AXIS]; + raw[Z_AXIS] += z_cxcy; + ubl_buffer_segment_raw(raw, feedrate); + raw[Z_AXIS] = z; if (segments == 0) // done with last segment return false; // did not set_current_from_destination() - seg_rx += seg_dx; - seg_ry += seg_dy; - seg_rz += seg_dz; - seg_le += seg_de; + LOOP_XYZE(i) raw[i] += diff[i]; - cx += seg_dx; - cy += seg_dy; + cx += diff[X_AXIS]; + cy += diff[Y_AXIS]; - if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next + if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next break; - } // Next segment still within same mesh cell, adjust the per-segment // slope and intercept to compute next z height. diff --git a/Marlin/src/module/motion.cpp b/Marlin/src/module/motion.cpp index a8bd25ef0..fdde5c00e 100644 --- a/Marlin/src/module/motion.cpp +++ b/Marlin/src/module/motion.cpp @@ -587,12 +587,9 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, float raw[XYZE]; COPY(raw, current_position); - // Drop one segment so the last move is to the exact target. - // If there's only 1 segment, loops will be skipped entirely. - --segments; // Calculate and execute the segments - for (uint16_t s = segments + 1; --s;) { + while (--segments) { static millis_t next_idle_ms = millis() + 200UL; thermalManager.manage_heater(); // This returns immediately if not really needed. @@ -691,16 +688,12 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, // SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOLNPAIR(" segments=", segments); - // Drop one segment so the last move is to the exact target. - // If there's only 1 segment, loops will be skipped entirely. - --segments; - // Get the raw current position as starting point float raw[XYZE]; COPY(raw, current_position); // Calculate and execute the segments - for (uint16_t s = segments + 1; --s;) { + while (--segments) { static millis_t next_idle_ms = millis() + 200UL; thermalManager.manage_heater(); // This returns immediately if not really needed. if (ELAPSED(millis(), next_idle_ms)) { diff --git a/Marlin/src/module/planner.h b/Marlin/src/module/planner.h index 070e75c01..d5634aa17 100644 --- a/Marlin/src/module/planner.h +++ b/Marlin/src/module/planner.h @@ -505,8 +505,8 @@ class Planner { /** * Get the index of the next / previous block in the ring buffer */ - static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } - static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } + static int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); } + static int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); } /** * Calculate the distance (not time) it takes to accelerate diff --git a/Marlin/src/module/stepper.cpp b/Marlin/src/module/stepper.cpp index 4793f7687..47fac7285 100644 --- a/Marlin/src/module/stepper.cpp +++ b/Marlin/src/module/stepper.cpp @@ -409,8 +409,7 @@ void Stepper::isr() { // If there is no current block, attempt to pop one from the buffer if (!current_block) { // Anything in the buffer? - current_block = planner.get_current_block(); - if (current_block) { + if ((current_block = planner.get_current_block())) { trapezoid_generator_reset(); // Initialize Bresenham counters to 1/2 the ceiling