Patches to UBL
This commit is contained in:
parent
14cf527bb8
commit
15edb41cee
@ -299,10 +299,8 @@ float code_value_temp_diff();
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
struct linear_fit {
|
||||
double A, B, D;
|
||||
};
|
||||
struct linear_fit *lsf_linear_fit( double *, double *, double *, int );
|
||||
typedef struct { double A, B, D; } linear_fit;
|
||||
linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int);
|
||||
#endif
|
||||
|
||||
#if PLANNER_LEVELING
|
||||
|
@ -23,111 +23,95 @@
|
||||
/**
|
||||
* Least Squares Best Fit By Roxy and Ed Williams
|
||||
*
|
||||
* This algorythm is high speed and has a very small code footprint.
|
||||
* Its results are identical to both the Iterative Least Squares published
|
||||
* earlier by Roxy and the QR_SOLVE solution. If used in place of QR_SOLVE
|
||||
* it saves roughly 10KB of program memory.
|
||||
* This algorithm is high speed and has a very small code footprint.
|
||||
* Its results are identical to both the Iterative Least-Squares published
|
||||
* earlier by Roxy and the QR_SOLVE solution. If used in place of QR_SOLVE
|
||||
* it saves roughly 10K of program memory.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) // Currently only used by UBL, but is applicable to Grid Based (Linear) Bed Leveling
|
||||
#include <math.h>
|
||||
#include "ubl.h"
|
||||
#include "Marlin.h"
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) // Currently only used by UBL, but is applicable to Grid Based (Linear) Bed Leveling
|
||||
|
||||
double linear_fit_average(double *, int);
|
||||
double linear_fit_average_squared(double *, int);
|
||||
double linear_fit_average_mixed_terms(double *, double *, int );
|
||||
double linear_fit_average_product(double *matrix1, double *matrix2, int n);
|
||||
void linear_fit_subtract_mean(double *matrix, double bar, int n);
|
||||
double linear_fit_max_abs(double *, int);
|
||||
#include "ubl.h"
|
||||
#include "Marlin.h"
|
||||
#include "macros.h"
|
||||
#include <math.h>
|
||||
|
||||
struct linear_fit linear_fit_results;
|
||||
double linear_fit_average(double m[], const int);
|
||||
//double linear_fit_average_squared(double m[], const int);
|
||||
//double linear_fit_average_mixed_terms(double m1[], double m2[], const int);
|
||||
double linear_fit_average_product(double matrix1[], double matrix2[], const int n);
|
||||
void linear_fit_subtract_mean(double matrix[], double bar, const int n);
|
||||
double linear_fit_max_abs(double m[], const int);
|
||||
|
||||
struct linear_fit *lsf_linear_fit(double *x, double *y, double *z, int n) {
|
||||
double xbar, ybar, zbar;
|
||||
double x2bar, y2bar;
|
||||
double xybar, xzbar, yzbar;
|
||||
double D;
|
||||
int i;
|
||||
linear_fit linear_fit_results;
|
||||
|
||||
linear_fit_results.A = 0.0;
|
||||
linear_fit_results.B = 0.0;
|
||||
linear_fit_results.D = 0.0;
|
||||
linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int n) {
|
||||
double xbar, ybar, zbar,
|
||||
x2bar, y2bar,
|
||||
xybar, xzbar, yzbar,
|
||||
D;
|
||||
|
||||
xbar = linear_fit_average(x, n);
|
||||
ybar = linear_fit_average(y, n);
|
||||
zbar = linear_fit_average(z, n);
|
||||
linear_fit_results.A = 0.0;
|
||||
linear_fit_results.B = 0.0;
|
||||
linear_fit_results.D = 0.0;
|
||||
|
||||
linear_fit_subtract_mean( x, xbar, n);
|
||||
linear_fit_subtract_mean( y, ybar, n);
|
||||
linear_fit_subtract_mean( z, zbar, n);
|
||||
xbar = linear_fit_average(x, n);
|
||||
ybar = linear_fit_average(y, n);
|
||||
zbar = linear_fit_average(z, n);
|
||||
|
||||
x2bar = linear_fit_average_product( x, x, n);
|
||||
y2bar = linear_fit_average_product( y, y, n);
|
||||
xybar = linear_fit_average_product( x, y, n);
|
||||
xzbar = linear_fit_average_product( x, z, n);
|
||||
yzbar = linear_fit_average_product( y, z, n);
|
||||
linear_fit_subtract_mean(x, xbar, n);
|
||||
linear_fit_subtract_mean(y, ybar, n);
|
||||
linear_fit_subtract_mean(z, zbar, n);
|
||||
|
||||
D = x2bar*y2bar - xybar*xybar;
|
||||
for(i=0; i<n; i++) {
|
||||
if (fabs(D) <= 1e-15*( linear_fit_max_abs(x, n) + linear_fit_max_abs(y, n))) {
|
||||
printf( "error: x,y points are collinear at index:%d \n", i );
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
x2bar = linear_fit_average_product(x, x, n);
|
||||
y2bar = linear_fit_average_product(y, y, n);
|
||||
xybar = linear_fit_average_product(x, y, n);
|
||||
xzbar = linear_fit_average_product(x, z, n);
|
||||
yzbar = linear_fit_average_product(y, z, n);
|
||||
|
||||
linear_fit_results.A = -(xzbar*y2bar - yzbar*xybar) / D;
|
||||
linear_fit_results.B = -(yzbar*x2bar - xzbar*xybar) / D;
|
||||
// linear_fit_results.D = -(zbar - linear_fit_results->A*xbar - linear_fit_results->B*ybar);
|
||||
linear_fit_results.D = -(zbar + linear_fit_results.A*xbar + linear_fit_results.B*ybar);
|
||||
D = x2bar * y2bar - xybar * xybar;
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (fabs(D) <= 1e-15 * (linear_fit_max_abs(x, n) + linear_fit_max_abs(y, n))) {
|
||||
printf("error: x,y points are collinear at index:%d\n", i);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
return &linear_fit_results;
|
||||
linear_fit_results.A = -(xzbar * y2bar - yzbar * xybar) / D;
|
||||
linear_fit_results.B = -(yzbar * x2bar - xzbar * xybar) / D;
|
||||
// linear_fit_results.D = -(zbar - linear_fit_results->A * xbar - linear_fit_results->B * ybar);
|
||||
linear_fit_results.D = -(zbar + linear_fit_results.A * xbar + linear_fit_results.B * ybar);
|
||||
|
||||
return &linear_fit_results;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
double linear_fit_average(double *matrix, int n)
|
||||
{
|
||||
int i;
|
||||
double sum=0.0;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
sum += matrix[i];
|
||||
return sum / (double) n;
|
||||
double linear_fit_average(double *matrix, const int n) {
|
||||
double sum = 0.0;
|
||||
for (int i = 0; i < n; i++)
|
||||
sum += matrix[i];
|
||||
return sum / (double)n;
|
||||
}
|
||||
|
||||
double linear_fit_average_product(double *matrix1, double *matrix2, int n) {
|
||||
int i;
|
||||
double sum = 0.0;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
sum += matrix1[i] * matrix2[i];
|
||||
return sum / (double) n;
|
||||
double linear_fit_average_product(double *matrix1, double *matrix2, const int n) {
|
||||
double sum = 0.0;
|
||||
for (int i = 0; i < n; i++)
|
||||
sum += matrix1[i] * matrix2[i];
|
||||
return sum / (double)n;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void linear_fit_subtract_mean(double *matrix, double bar, int n) {
|
||||
int i;
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
matrix[i] -= bar;
|
||||
}
|
||||
return;
|
||||
void linear_fit_subtract_mean(double *matrix, double bar, const int n) {
|
||||
for (int i = 0; i < n; i++)
|
||||
matrix[i] -= bar;
|
||||
}
|
||||
|
||||
double linear_fit_max_abs(double *matrix, int n) {
|
||||
int i;
|
||||
double max_abs = 0.0;
|
||||
|
||||
for(i=0; i<n; i++)
|
||||
if ( max_abs < fabs(matrix[i]))
|
||||
max_abs = fabs(matrix[i]);
|
||||
return max_abs;
|
||||
double linear_fit_max_abs(double *matrix, const int n) {
|
||||
double max_abs = 0.0;
|
||||
for (int i = 0; i < n; i++)
|
||||
NOLESS(max_abs, fabs(matrix[i]));
|
||||
return max_abs;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -40,7 +40,7 @@
|
||||
bool lcd_clicked();
|
||||
void lcd_implementation_clear();
|
||||
void lcd_mesh_edit_setup(float initial);
|
||||
void tilt_mesh_based_on_probed_grid( const bool );
|
||||
void tilt_mesh_based_on_probed_grid(const bool);
|
||||
float lcd_mesh_edit();
|
||||
void lcd_z_offset_edit_setup(float);
|
||||
float lcd_z_offset_edit();
|
||||
@ -51,7 +51,7 @@
|
||||
extern bool code_has_value();
|
||||
extern float probe_pt(float x, float y, bool, int);
|
||||
extern bool set_probe_deployed(bool);
|
||||
|
||||
|
||||
bool ProbeStay = true;
|
||||
|
||||
constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
|
||||
@ -175,7 +175,7 @@
|
||||
* area you are manually probing. Note that the command tries to start you in a corner
|
||||
* of the bed where movement will be predictable. You can force the location to be used in
|
||||
* the distance calculations by using the X and Y parameters. You may find it is helpful to
|
||||
* print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
|
||||
* print out a Mesh Map (G29 O) to understand where the mesh is invalidated and where
|
||||
* the nozzle will need to move in order to complete the command. The C parameter is
|
||||
* available on the Phase 2 command also and indicates the search for points to measure should
|
||||
* be done based on the current location of the nozzle.
|
||||
@ -393,11 +393,11 @@
|
||||
SERIAL_PROTOCOLLNPGM("ERROR - grid size must be 2 or more");
|
||||
return;
|
||||
}
|
||||
if (grid_size_G > GRID_MAX_POINTS_X || grid_size_G > GRID_MAX_POINTS_Y ) {
|
||||
if (grid_size_G > GRID_MAX_POINTS_X || grid_size_G > GRID_MAX_POINTS_Y) {
|
||||
SERIAL_PROTOCOLLNPGM("ERROR - grid size can NOT exceed GRID_MAX_POINTS_X nor GRID_MAX_POINTS_Y");
|
||||
return;
|
||||
}
|
||||
tilt_mesh_based_on_probed_grid( code_seen('O')||code_seen('M'));
|
||||
tilt_mesh_based_on_probed_grid(code_seen('O') || code_seen('M'));
|
||||
}
|
||||
|
||||
if (code_seen('P')) {
|
||||
@ -419,14 +419,14 @@
|
||||
//
|
||||
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
|
||||
//
|
||||
if (!code_seen('C') ) {
|
||||
if (!code_seen('C')) {
|
||||
ubl.invalidate();
|
||||
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
|
||||
}
|
||||
if (g29_verbose_level > 1) {
|
||||
SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
|
||||
SERIAL_ECHO(x_pos);
|
||||
SERIAL_ECHOPAIR(",", y_pos);
|
||||
SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
|
||||
SERIAL_PROTOCOLCHAR(',');
|
||||
SERIAL_PROTOCOL(y_pos);
|
||||
SERIAL_PROTOCOLLNPGM(")\n");
|
||||
}
|
||||
probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
||||
@ -440,16 +440,16 @@
|
||||
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
|
||||
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
||||
if (!x_flag && !y_flag) { // use a good default location for the path
|
||||
x_pos = X_MIN_POS;
|
||||
y_pos = Y_MIN_POS;
|
||||
if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
|
||||
x_pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
|
||||
// The flipped > and < operators on these two comparisons is
|
||||
// intentional. It should cause the probed points to follow a
|
||||
// nice path on Cartesian printers. It may make sense to
|
||||
// have Delta printers default to the center of the bed.
|
||||
// For now, until that is decided, it can be forced with the X
|
||||
// and Y parameters.
|
||||
x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
|
||||
y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
|
||||
}
|
||||
|
||||
if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
|
||||
y_pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
|
||||
|
||||
} // For now, until that is decided, it can be forced with the X
|
||||
// and Y parameters.
|
||||
if (code_seen('C')) {
|
||||
x_pos = current_position[X_AXIS];
|
||||
y_pos = current_position[Y_AXIS];
|
||||
@ -674,7 +674,7 @@
|
||||
if (ELAPSED(millis(), nxt)) {
|
||||
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
|
||||
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||
lcd_setstatuspgm("Z-Offset Stopped");
|
||||
lcd_setstatuspgm(PSTR("Z-Offset Stopped"));
|
||||
restore_ubl_active_state_and_leave();
|
||||
goto LEAVE;
|
||||
}
|
||||
@ -693,7 +693,7 @@
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_reset_alert_level();
|
||||
lcd_setstatuspgm("");
|
||||
lcd_setstatuspgm(PSTR(""));
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
|
||||
@ -773,7 +773,7 @@
|
||||
return;
|
||||
}
|
||||
|
||||
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
|
||||
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest); // the '1' says we want the location to be relative to the probe
|
||||
if (location.x_index >= 0 && location.y_index >= 0) {
|
||||
|
||||
const float rawx = ubl.mesh_index_to_xpos[location.x_index],
|
||||
@ -891,7 +891,7 @@
|
||||
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
|
||||
do_blocking_move_to_z(in_height);
|
||||
do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
|
||||
//, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
|
||||
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
|
||||
|
||||
const float z1 = use_encoder_wheel_to_measure_point();
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
||||
@ -997,7 +997,7 @@
|
||||
|
||||
bool g29_parameter_parsing() {
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_setstatuspgm("Doing G29 UBL!");
|
||||
lcd_setstatuspgm(PSTR("Doing G29 UBL!"));
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
|
||||
@ -1118,7 +1118,7 @@
|
||||
ubl_state_recursion_chk++;
|
||||
if (ubl_state_recursion_chk != 1) {
|
||||
SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
|
||||
lcd_setstatuspgm("save_UBL_active() error");
|
||||
lcd_setstatuspgm(PSTR("save_UBL_active() error"));
|
||||
lcd_quick_feedback();
|
||||
return;
|
||||
}
|
||||
@ -1129,7 +1129,7 @@
|
||||
void restore_ubl_active_state_and_leave() {
|
||||
if (--ubl_state_recursion_chk) {
|
||||
SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
|
||||
lcd_setstatuspgm("restore_UBL_active() error");
|
||||
lcd_setstatuspgm(PSTR("restore_UBL_active() error"));
|
||||
lcd_quick_feedback();
|
||||
return;
|
||||
}
|
||||
@ -1369,7 +1369,7 @@
|
||||
memset(not_done, 0xFF, sizeof(not_done));
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_setstatuspgm("Fine Tuning Mesh");
|
||||
lcd_setstatuspgm(PSTR("Fine Tuning Mesh"));
|
||||
#endif
|
||||
|
||||
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||
@ -1377,7 +1377,7 @@
|
||||
do {
|
||||
if (do_ubl_mesh_map) ubl.display_map(map_type);
|
||||
|
||||
location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx, ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
|
||||
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
|
||||
// It doesn't matter if the probe can not reach this
|
||||
// location. This is a manual edit of the Mesh Point.
|
||||
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
|
||||
@ -1428,7 +1428,7 @@
|
||||
lcd_return_to_status();
|
||||
//SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
|
||||
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||
lcd_setstatuspgm("Mesh Editing Stopped");
|
||||
lcd_setstatuspgm(PSTR("Mesh Editing Stopped"));
|
||||
|
||||
while (ubl_lcd_clicked()) idle();
|
||||
|
||||
@ -1456,69 +1456,68 @@
|
||||
do_blocking_move_to_xy(lx, ly);
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_setstatuspgm("Done Editing Mesh");
|
||||
lcd_setstatuspgm(PSTR("Done Editing Mesh"));
|
||||
#endif
|
||||
SERIAL_ECHOLNPGM("Done Editing Mesh");
|
||||
}
|
||||
|
||||
|
||||
void tilt_mesh_based_on_probed_grid( const bool do_ubl_mesh_map) {
|
||||
int8_t grid_G_index_to_xpos[grid_size_G]; // UBL MESH X index to be probed
|
||||
int8_t grid_G_index_to_ypos[grid_size_G]; // UBL MESH Y index to be probed
|
||||
int8_t i, j ,k, xCount, yCount, G_X_index, G_Y_index; // counter variables
|
||||
void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
|
||||
int8_t grid_G_index_to_xpos[grid_size_G], // UBL MESH X index to be probed
|
||||
grid_G_index_to_ypos[grid_size_G], // UBL MESH Y index to be probed
|
||||
i, j ,k, xCount, yCount, G_X_index, G_Y_index; // counter variables
|
||||
float z_values_G[grid_size_G][grid_size_G];
|
||||
|
||||
struct linear_fit *results;
|
||||
linear_fit *results;
|
||||
|
||||
for (G_Y_index = 0; G_Y_index < grid_size_G; G_Y_index++)
|
||||
for (G_X_index = 0; G_X_index < grid_size_G; G_X_index++)
|
||||
z_values_G[G_X_index][G_Y_index] = NAN;
|
||||
|
||||
uint8_t x_min = GRID_MAX_POINTS_X - 1;
|
||||
uint8_t x_max = 0;
|
||||
uint8_t y_min = GRID_MAX_POINTS_Y - 1;
|
||||
uint8_t y_max = 0;
|
||||
|
||||
|
||||
uint8_t x_min = GRID_MAX_POINTS_X - 1,
|
||||
x_max = 0,
|
||||
y_min = GRID_MAX_POINTS_Y - 1,
|
||||
y_max = 0;
|
||||
|
||||
//find min & max probeable points in the mesh
|
||||
for (xCount = 0; xCount < GRID_MAX_POINTS_X ; xCount++) {
|
||||
for (yCount = 0; yCount < GRID_MAX_POINTS_Y ; yCount++) {
|
||||
for (xCount = 0; xCount < GRID_MAX_POINTS_X; xCount++) {
|
||||
for (yCount = 0; yCount < GRID_MAX_POINTS_Y; yCount++) {
|
||||
if (WITHIN(ubl.mesh_index_to_xpos[xCount], MIN_PROBE_X, MAX_PROBE_X) && WITHIN(ubl.mesh_index_to_ypos[yCount], MIN_PROBE_Y, MAX_PROBE_Y)) {
|
||||
if (x_min > xCount) x_min = xCount;
|
||||
if (x_max < xCount) x_max = xCount;
|
||||
if (y_min > yCount) y_min = yCount;
|
||||
if (y_max < yCount) y_max = yCount;
|
||||
NOMORE(x_min, xCount);
|
||||
NOLESS(x_max, xCount);
|
||||
NOMORE(y_min, yCount);
|
||||
NOLESS(y_max, yCount);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ((x_max - x_min + 1) < (grid_size_G) || (y_max - y_min + 1) < (grid_size_G)) {
|
||||
|
||||
if (x_max - x_min + 1 < grid_size_G || y_max - y_min + 1 < grid_size_G) {
|
||||
SERIAL_ECHOPAIR("ERROR - probeable UBL MESH smaller than grid - X points: ", x_max - x_min + 1);
|
||||
SERIAL_ECHOPAIR(" Y points: ", y_max - y_min + 1);
|
||||
SERIAL_ECHOLNPAIR(" grid: ", grid_size_G);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// populate X matrix
|
||||
for (G_X_index = 0; G_X_index < grid_size_G; G_X_index++) {
|
||||
grid_G_index_to_xpos[G_X_index] = x_min + G_X_index * (x_max - x_min)/(grid_size_G - 1);
|
||||
if (G_X_index > 0 && grid_G_index_to_xpos[G_X_index - 1] == grid_G_index_to_xpos[G_X_index] ) {
|
||||
grid_G_index_to_xpos[G_X_index] = x_min + G_X_index * (x_max - x_min) / (grid_size_G - 1);
|
||||
if (G_X_index > 0 && grid_G_index_to_xpos[G_X_index - 1] == grid_G_index_to_xpos[G_X_index]) {
|
||||
grid_G_index_to_xpos[G_X_index] = grid_G_index_to_xpos[G_X_index - 1] + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// populate Y matrix
|
||||
for (G_Y_index = 0; G_Y_index < grid_size_G; G_Y_index++) {
|
||||
grid_G_index_to_ypos[G_Y_index] = y_min + G_Y_index * (y_max - y_min)/(grid_size_G - 1);
|
||||
if (G_Y_index > 0 && grid_G_index_to_ypos[G_Y_index -1] == grid_G_index_to_ypos[G_Y_index] ) {
|
||||
grid_G_index_to_ypos[G_Y_index] = y_min + G_Y_index * (y_max - y_min) / (grid_size_G - 1);
|
||||
if (G_Y_index > 0 && grid_G_index_to_ypos[G_Y_index - 1] == grid_G_index_to_ypos[G_Y_index]) {
|
||||
grid_G_index_to_ypos[G_Y_index] = grid_G_index_to_ypos[G_Y_index - 1] + 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||
|
||||
|
||||
DEPLOY_PROBE();
|
||||
|
||||
|
||||
// this is a copy of the G29 AUTO_BED_LEVELING_BILINEAR method/code
|
||||
#undef PROBE_Y_FIRST
|
||||
#if ENABLED(PROBE_Y_FIRST)
|
||||
@ -1532,15 +1531,15 @@
|
||||
#define PR_INNER_VAR xCount
|
||||
#define PR_INNER_NUM grid_size_G
|
||||
#endif
|
||||
|
||||
|
||||
bool zig = PR_OUTER_NUM & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
|
||||
|
||||
|
||||
// Outer loop is Y with PROBE_Y_FIRST disabled
|
||||
for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_NUM; PR_OUTER_VAR++) {
|
||||
|
||||
|
||||
int8_t inStart, inStop, inInc;
|
||||
|
||||
SERIAL_ECHOPAIR("\nPR_OUTER_VAR: ", PR_OUTER_VAR);
|
||||
|
||||
SERIAL_ECHOPAIR("\nPR_OUTER_VAR: ", PR_OUTER_VAR);
|
||||
|
||||
if (zig) { // away from origin
|
||||
inStart = 0;
|
||||
@ -1552,87 +1551,80 @@ SERIAL_ECHOPAIR("\nPR_OUTER_VAR: ", PR_OUTER_VAR);
|
||||
inStop = -1;
|
||||
inInc = -1;
|
||||
}
|
||||
|
||||
|
||||
zig = !zig; // zag
|
||||
|
||||
|
||||
// Inner loop is Y with PROBE_Y_FIRST enabled
|
||||
for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
|
||||
SERIAL_ECHOPAIR("\nPR_INNER_VAR: ", PR_INNER_VAR);
|
||||
//SERIAL_ECHOPAIR("\nPR_INNER_VAR: ", PR_INNER_VAR);
|
||||
|
||||
//SERIAL_ECHOPAIR("\nCheckpoint: ", 1);
|
||||
|
||||
SERIAL_ECHOPAIR("\nCheckpoint: ", 1);
|
||||
|
||||
// end of G29 AUTO_BED_LEVELING_BILINEAR method/code
|
||||
if (ubl_lcd_clicked()) {
|
||||
SERIAL_ECHOPAIR("\nCheckpoint: ", 2);
|
||||
//SERIAL_ECHOPAIR("\nCheckpoint: ", 2);
|
||||
SERIAL_ECHOLNPGM("\nGrid only partially populated.\n");
|
||||
lcd_quick_feedback();
|
||||
STOW_PROBE();
|
||||
SERIAL_ECHOPAIR("\nCheckpoint: ", 3);
|
||||
//SERIAL_ECHOPAIR("\nCheckpoint: ", 3);
|
||||
while (ubl_lcd_clicked()) idle();
|
||||
SERIAL_ECHOPAIR("\nCheckpoint: ", 4);
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
restore_ubl_active_state_and_leave();
|
||||
safe_delay(50); // Debounce the Encoder wheel
|
||||
return;
|
||||
}
|
||||
SERIAL_ECHOPAIR("\nCheckpoint: ", 5);
|
||||
|
||||
//SERIAL_ECHOPAIR("\nCheckpoint: ", 4);
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
restore_ubl_active_state_and_leave();
|
||||
safe_delay(50); // Debounce the Encoder wheel
|
||||
return;
|
||||
}
|
||||
//SERIAL_ECHOPAIR("\nCheckpoint: ", 5);
|
||||
|
||||
const float probeX = ubl.mesh_index_to_xpos[grid_G_index_to_xpos[xCount]], //where we want the probe to be
|
||||
probeY = ubl.mesh_index_to_ypos[grid_G_index_to_ypos[yCount]];
|
||||
SERIAL_ECHOPAIR("\nCheckpoint: ", 6);
|
||||
|
||||
const float measured_z = probe_pt(LOGICAL_X_POSITION(probeX), LOGICAL_Y_POSITION(probeY), code_seen('E'), (code_seen('V') && code_has_value()) ? code_value_int() : 0 ); // takes into account the offsets
|
||||
//SERIAL_ECHOPAIR("\nCheckpoint: ", 6);
|
||||
|
||||
SERIAL_ECHOPAIR("\nmeasured_z: ", measured_z );
|
||||
const float measured_z = probe_pt(LOGICAL_X_POSITION(probeX), LOGICAL_Y_POSITION(probeY), code_seen('E'), (code_seen('V') && code_has_value()) ? code_value_int() : 0); // takes into account the offsets
|
||||
|
||||
//SERIAL_ECHOPAIR("\nmeasured_z: ", measured_z);
|
||||
|
||||
z_values_G[xCount][yCount] = measured_z;
|
||||
//SERIAL_LNPGM("\nFine Tuning of Mesh Stopped.");
|
||||
//SERIAL_ECHOLNPGM("\nFine Tuning of Mesh Stopped.");
|
||||
}
|
||||
}
|
||||
|
||||
SERIAL_ECHO("\nDone probing...\n");
|
||||
//SERIAL_ECHOLNPGM("\nDone probing...\n");
|
||||
|
||||
STOW_PROBE();
|
||||
restore_ubl_active_state_and_leave();
|
||||
|
||||
// ?? ubl.has_control_of_lcd_panel = true;
|
||||
// do_blocking_move_to_xy(ubl.mesh_index_to_xpos[grid_G_index_to_xpos[0]], ubl.mesh_index_to_ypos[grid_G_index_to_ypos[0]]);
|
||||
|
||||
// ?? ubl.has_control_of_lcd_panel = true;
|
||||
//do_blocking_move_to_xy(ubl.mesh_index_to_xpos[grid_G_index_to_xpos[0]], ubl.mesh_index_to_ypos[grid_G_index_to_ypos[0]]);
|
||||
|
||||
// least squares code
|
||||
double xxx9[] = { 0,50,100,150,200, 20,70,120,165,195, 0,50,100,150,200, 0,55,100,150,200, 0,65,100,150,205 };
|
||||
double yyy9[] = { 0, 1, 2, 3, 4, 50, 51, 52, 53, 54, 100, 101,102,103,104, 150,151,152,153,154, 200,201,202,203,204 };
|
||||
double zzz9[] = { 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.012,0.01};
|
||||
int nine_size = sizeof(xxx9) / sizeof(double);
|
||||
double xxx9[] = { 0,50,100,150,200, 20,70,120,165,195, 0,50,100,150,200, 0,55,100,150,200, 0,65,100,150,205 },
|
||||
yyy9[] = { 0, 1, 2, 3, 4, 50, 51, 52, 53, 54, 100, 101,102,103,104, 150,151,152,153,154, 200,201,202,203,204 },
|
||||
zzz9[] = { 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.012,0.01},
|
||||
xxx0[] = { 0.0, 0.0, 1.0 }, // Expect [0,0,0.1,0]
|
||||
yyy0[] = { 0.0, 1.0, 0.0 },
|
||||
zzz0[] = { 0.1, 0.1, 0.1 },
|
||||
xxx[] = { 0.0, 0.0, 1.0, 1.0 }, // Expect [0.1,0,0.05,0]
|
||||
yyy[] = { 0.0, 1.0, 0.0, 1.0 },
|
||||
zzz[] = { 0.05, 0.05, 0.15, 0.15 };
|
||||
|
||||
double xxx0[] = { 0.0, 0.0, 1.0 }; // Expect [0,0,0.1,0]
|
||||
double yyy0[] = { 0.0, 1.0, 0.0 };
|
||||
double zzz0[] = { 0.1, 0.1, 0.1 };
|
||||
int zero_size = sizeof(xxx0) / sizeof(double);
|
||||
results = lsf_linear_fit(xxx9, yyy9, zzz9, COUNT(xxx9));
|
||||
SERIAL_ECHOPAIR("\nxxx9->A =", results->A);
|
||||
SERIAL_ECHOPAIR("\nxxx9->B =", results->B);
|
||||
SERIAL_ECHOPAIR("\nxxx9->D =", results->D);
|
||||
SERIAL_EOL;
|
||||
|
||||
double xxx[] = { 0.0, 0.0, 1.0, 1.0 }; // Expect [0.1,0,0.05,0]
|
||||
double yyy[] = { 0.0, 1.0, 0.0, 1.0 };
|
||||
double zzz[] = { 0.05, 0.05, 0.15, 0.15 };
|
||||
int three_size = sizeof(xxx) / sizeof(double);
|
||||
results = lsf_linear_fit(xxx0, yyy0, zzz0, COUNT(xxx0));
|
||||
SERIAL_ECHOPAIR("\nxxx0->A =", results->A);
|
||||
SERIAL_ECHOPAIR("\nxxx0->B =", results->B);
|
||||
SERIAL_ECHOPAIR("\nxxx0->D =", results->D);
|
||||
SERIAL_EOL;
|
||||
|
||||
results = lsf_linear_fit(xxx9, yyy9, zzz9, nine_size);
|
||||
SERIAL_ECHOPAIR("\nxxx9->A =", results->A);
|
||||
SERIAL_ECHOPAIR("\nxxx9->B =", results->B);
|
||||
SERIAL_ECHOPAIR("\nxxx9->D =", results->D);
|
||||
SERIAL_ECHO("\n");
|
||||
results = lsf_linear_fit(xxx, yyy, zzz, COUNT(xxx));
|
||||
SERIAL_ECHOPAIR("\nxxx->A =", results->A);
|
||||
SERIAL_ECHOPAIR("\nxxx->B =", results->B);
|
||||
SERIAL_ECHOPAIR("\nxxx->D =", results->D);
|
||||
SERIAL_EOL;
|
||||
|
||||
results = lsf_linear_fit(xxx0, yyy0, zzz0, zero_size);
|
||||
SERIAL_ECHOPAIR("\nxxx0->A =", results->A);
|
||||
SERIAL_ECHOPAIR("\nxxx0->B =", results->B);
|
||||
SERIAL_ECHOPAIR("\nxxx0->D =", results->D);
|
||||
SERIAL_ECHO("\n");
|
||||
|
||||
results = lsf_linear_fit(xxx, yyy, zzz, three_size);
|
||||
SERIAL_ECHOPAIR("\nxxx->A =", results->A);
|
||||
SERIAL_ECHOPAIR("\nxxx->B =", results->B);
|
||||
SERIAL_ECHOPAIR("\nxxx->D =", results->D);
|
||||
SERIAL_ECHO("\n");
|
||||
|
||||
return;
|
||||
} // end of tilt_mesh_based_on_probed_grid()
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
Loading…
Reference in New Issue
Block a user