Merge pull request #10688 from ejtagle/bugfix-2.0.x
[2.0.x] Refactor, optimization of core planner/stepper/endstops logic
This commit is contained in:
commit
16f92dca44
@ -162,24 +162,148 @@ extern "C" {
|
||||
* (otherwise, characters will be lost due to UART overflow).
|
||||
* Then: Stepper, Endstops, Temperature, and -finally- all others.
|
||||
*/
|
||||
#define HAL_timer_isr_prologue_0 do{ DISABLE_TEMPERATURE_INTERRUPT(); sei(); }while(0)
|
||||
#define HAL_timer_isr_epilogue_0 do{ cli(); ENABLE_TEMPERATURE_INTERRUPT(); }while(0)
|
||||
#define HAL_timer_isr_prologue(TIMER_NUM)
|
||||
#define HAL_timer_isr_epilogue(TIMER_NUM)
|
||||
|
||||
#define HAL_timer_isr_prologue_1 \
|
||||
const bool temp_isr_was_enabled = TEMPERATURE_ISR_ENABLED(); \
|
||||
do{ \
|
||||
DISABLE_TEMPERATURE_INTERRUPT(); \
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT(); \
|
||||
sei(); \
|
||||
}while(0)
|
||||
/* 18 cycles maximum latency */
|
||||
#define HAL_STEP_TIMER_ISR \
|
||||
extern "C" void TIMER1_COMPA_vect (void) __attribute__ ((signal, naked, used, externally_visible)); \
|
||||
extern "C" void TIMER1_COMPA_vect_bottom (void) asm ("TIMER1_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
|
||||
void TIMER1_COMPA_vect (void) { \
|
||||
__asm__ __volatile__ ( \
|
||||
A("push r16") /* 2 Save R16 */ \
|
||||
A("in r16, __SREG__") /* 1 Get SREG */ \
|
||||
A("push r16") /* 2 Save SREG into stack */ \
|
||||
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
|
||||
A("push r16") /* 2 Save TIMSK0 into the stack */ \
|
||||
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
|
||||
A("sts %[timsk0], r16") /* 2 And set the new value */ \
|
||||
A("lds r16, %[timsk1]") /* 2 Load into R0 the stepper timer Interrupt mask register [TIMSK1] */ \
|
||||
A("andi r16,~%[msk1]") /* 1 Disable the stepper ISR */ \
|
||||
A("sts %[timsk1], r16") /* 2 And set the new value */ \
|
||||
A("sei") /* 1 Enable global interrupts - stepper and temperature ISRs are disabled, so no risk of reentry or being preempted by the temperature ISR */ \
|
||||
A("push r16") /* 2 Save TIMSK1 into stack */ \
|
||||
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
|
||||
A("push r16") /* 2 Save RAMPZ into stack */ \
|
||||
A("in r16, 0x3C") /* 1 Get EIND register */ \
|
||||
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
|
||||
A("push r1") \
|
||||
A("push r18") \
|
||||
A("push r19") \
|
||||
A("push r20") \
|
||||
A("push r21") \
|
||||
A("push r22") \
|
||||
A("push r23") \
|
||||
A("push r24") \
|
||||
A("push r25") \
|
||||
A("push r26") \
|
||||
A("push r27") \
|
||||
A("push r30") \
|
||||
A("push r31") \
|
||||
A("clr r1") /* C runtime expects this register to be 0 */ \
|
||||
A("call TIMER1_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
|
||||
A("pop r31") \
|
||||
A("pop r30") \
|
||||
A("pop r27") \
|
||||
A("pop r26") \
|
||||
A("pop r25") \
|
||||
A("pop r24") \
|
||||
A("pop r23") \
|
||||
A("pop r22") \
|
||||
A("pop r21") \
|
||||
A("pop r20") \
|
||||
A("pop r19") \
|
||||
A("pop r18") \
|
||||
A("pop r1") \
|
||||
A("pop r0") \
|
||||
A("out 0x3C, r16") /* 1 Restore EIND register */ \
|
||||
A("pop r16") /* 2 Get the original RAMPZ register value */ \
|
||||
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
|
||||
A("pop r16") /* 2 Get the original TIMSK1 value but with stepper ISR disabled */ \
|
||||
A("ori r16,%[msk1]") /* 1 Reenable the stepper ISR */ \
|
||||
A("cli") /* 1 Disable global interrupts - Reenabling Stepper ISR can reenter amd temperature can reenter, and we want that, if it happens, after this ISR has ended */ \
|
||||
A("sts %[timsk1], r16") /* 2 And restore the old value - This reenables the stepper ISR */ \
|
||||
A("pop r16") /* 2 Get the temperature timer Interrupt mask register [TIMSK0] */ \
|
||||
A("sts %[timsk0], r16") /* 2 And restore the old value - This reenables the temperature ISR */ \
|
||||
A("pop r16") /* 2 Get the old SREG value */ \
|
||||
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
|
||||
A("pop r16") /* 2 Restore R16 value */ \
|
||||
A("reti") /* 4 Return from interrupt */ \
|
||||
: \
|
||||
: [timsk0] "i" ((uint16_t)&TIMSK0), \
|
||||
[timsk1] "i" ((uint16_t)&TIMSK1), \
|
||||
[msk0] "M" ((uint8_t)(1<<OCIE0B)),\
|
||||
[msk1] "M" ((uint8_t)(1<<OCIE1A)) \
|
||||
: \
|
||||
); \
|
||||
} \
|
||||
void TIMER1_COMPA_vect_bottom(void)
|
||||
|
||||
#define HAL_timer_isr_epilogue_1 do{ cli(); ENABLE_STEPPER_DRIVER_INTERRUPT(); if (temp_isr_was_enabled) ENABLE_TEMPERATURE_INTERRUPT(); }while(0)
|
||||
|
||||
#define HAL_timer_isr_prologue(TIMER_NUM) _CAT(HAL_timer_isr_prologue_, TIMER_NUM)
|
||||
#define HAL_timer_isr_epilogue(TIMER_NUM) _CAT(HAL_timer_isr_epilogue_, TIMER_NUM)
|
||||
|
||||
#define HAL_STEP_TIMER_ISR ISR(TIMER1_COMPA_vect)
|
||||
#define HAL_TEMP_TIMER_ISR ISR(TIMER0_COMPB_vect)
|
||||
/* 14 cycles maximum latency */
|
||||
#define HAL_TEMP_TIMER_ISR \
|
||||
extern "C" void TIMER0_COMPB_vect (void) __attribute__ ((signal, naked, used, externally_visible)); \
|
||||
extern "C" void TIMER0_COMPB_vect_bottom(void) asm ("TIMER0_COMPB_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
|
||||
void TIMER0_COMPB_vect (void) { \
|
||||
__asm__ __volatile__ ( \
|
||||
A("push r16") /* 2 Save R16 */ \
|
||||
A("in r16, __SREG__") /* 1 Get SREG */ \
|
||||
A("push r16") /* 2 Save SREG into stack */ \
|
||||
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
|
||||
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
|
||||
A("sts %[timsk0], r16") /* 2 And set the new value */ \
|
||||
A("sei") /* 1 Enable global interrupts - It is safe, as the temperature ISR is disabled, so we cannot reenter it */ \
|
||||
A("push r16") /* 2 Save TIMSK0 into stack */ \
|
||||
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
|
||||
A("push r16") /* 2 Save RAMPZ into stack */ \
|
||||
A("in r16, 0x3C") /* 1 Get EIND register */ \
|
||||
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
|
||||
A("push r1") \
|
||||
A("push r18") \
|
||||
A("push r19") \
|
||||
A("push r20") \
|
||||
A("push r21") \
|
||||
A("push r22") \
|
||||
A("push r23") \
|
||||
A("push r24") \
|
||||
A("push r25") \
|
||||
A("push r26") \
|
||||
A("push r27") \
|
||||
A("push r30") \
|
||||
A("push r31") \
|
||||
A("clr r1") /* C runtime expects this register to be 0 */ \
|
||||
A("call TIMER0_COMPB_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
|
||||
A("pop r31") \
|
||||
A("pop r30") \
|
||||
A("pop r27") \
|
||||
A("pop r26") \
|
||||
A("pop r25") \
|
||||
A("pop r24") \
|
||||
A("pop r23") \
|
||||
A("pop r22") \
|
||||
A("pop r21") \
|
||||
A("pop r20") \
|
||||
A("pop r19") \
|
||||
A("pop r18") \
|
||||
A("pop r1") \
|
||||
A("pop r0") \
|
||||
A("out 0x3C, r16") /* 1 Restore EIND register */ \
|
||||
A("pop r16") /* 2 Get the original RAMPZ register value */ \
|
||||
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
|
||||
A("pop r16") /* 2 Get the original TIMSK0 value but with temperature ISR disabled */ \
|
||||
A("ori r16,%[msk0]") /* 1 Enable temperature ISR */ \
|
||||
A("cli") /* 1 Disable global interrupts - We must do this, as we will reenable the temperature ISR, and we don´t want to reenter this handler until the current one is done */ \
|
||||
A("sts %[timsk0], r16") /* 2 And restore the old value */ \
|
||||
A("pop r16") /* 2 Get the old SREG */ \
|
||||
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
|
||||
A("pop r16") /* 2 Restore R16 */ \
|
||||
A("reti") /* 4 Return from interrupt */ \
|
||||
: \
|
||||
: [timsk0] "i"((uint16_t)&TIMSK0), \
|
||||
[msk0] "M" ((uint8_t)(1<<OCIE0B)) \
|
||||
: \
|
||||
); \
|
||||
} \
|
||||
void TIMER0_COMPB_vect_bottom(void)
|
||||
|
||||
// ADC
|
||||
#ifdef DIDR2
|
||||
|
@ -24,7 +24,7 @@
|
||||
* Endstop Interrupts
|
||||
*
|
||||
* Without endstop interrupts the endstop pins must be polled continually in
|
||||
* the stepper-ISR via endstops.update(), most of the time finding no change.
|
||||
* the temperature-ISR via endstops.update(), most of the time finding no change.
|
||||
* With this feature endstops.update() is called only when we know that at
|
||||
* least one endstop has changed state, saving valuable CPU cycles.
|
||||
*
|
||||
@ -40,17 +40,10 @@
|
||||
|
||||
#include "../../core/macros.h"
|
||||
#include <stdint.h>
|
||||
|
||||
volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
|
||||
// Must be reset to 0 by the test function when finished.
|
||||
|
||||
// This is what is really done inside the interrupts.
|
||||
FORCE_INLINE void endstop_ISR_worker( void ) {
|
||||
e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice.
|
||||
}
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR(void) { endstop_ISR_worker(); }
|
||||
void endstop_ISR(void) { endstops.check_possible_change(); }
|
||||
|
||||
/**
|
||||
* Patch for pins_arduino.h (...\Arduino\hardware\arduino\avr\variants\mega\pins_arduino.h)
|
||||
@ -95,19 +88,19 @@ void pciSetup(const int8_t pin) {
|
||||
|
||||
// Handlers for pin change interrupts
|
||||
#ifdef PCINT0_vect
|
||||
ISR(PCINT0_vect) { endstop_ISR_worker(); }
|
||||
ISR(PCINT0_vect) { endstop_ISR(); }
|
||||
#endif
|
||||
|
||||
#ifdef PCINT1_vect
|
||||
ISR(PCINT1_vect) { endstop_ISR_worker(); }
|
||||
ISR(PCINT1_vect) { endstop_ISR(); }
|
||||
#endif
|
||||
|
||||
#ifdef PCINT2_vect
|
||||
ISR(PCINT2_vect) { endstop_ISR_worker(); }
|
||||
ISR(PCINT2_vect) { endstop_ISR(); }
|
||||
#endif
|
||||
|
||||
#ifdef PCINT3_vect
|
||||
ISR(PCINT3_vect) { endstop_ISR_worker(); }
|
||||
ISR(PCINT3_vect) { endstop_ISR(); }
|
||||
#endif
|
||||
|
||||
void setup_endstop_interrupts( void ) {
|
||||
|
@ -46,6 +46,11 @@ static void TXBegin(void) {
|
||||
// Disable UART interrupt in NVIC
|
||||
NVIC_DisableIRQ( UART_IRQn );
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
// Disable clock
|
||||
pmc_disable_periph_clk( ID_UART );
|
||||
|
||||
|
@ -99,6 +99,11 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
|
||||
// Disable interrupt, just in case it was already enabled
|
||||
NVIC_DisableIRQ(irq);
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
// Disable timer interrupt
|
||||
tc->TC_CHANNEL[channel].TC_IDR = TC_IDR_CPCS;
|
||||
|
||||
@ -126,18 +131,28 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
|
||||
}
|
||||
|
||||
void HAL_timer_enable_interrupt(const uint8_t timer_num) {
|
||||
const tTimerConfig * const pConfig = &TimerConfig[timer_num];
|
||||
pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_IER = TC_IER_CPCS;
|
||||
IRQn_Type irq = TimerConfig[timer_num].IRQ_Id;
|
||||
NVIC_EnableIRQ(irq);
|
||||
}
|
||||
|
||||
void HAL_timer_disable_interrupt(const uint8_t timer_num) {
|
||||
const tTimerConfig * const pConfig = &TimerConfig[timer_num];
|
||||
pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_IDR = TC_IDR_CPCS;
|
||||
IRQn_Type irq = TimerConfig[timer_num].IRQ_Id;
|
||||
NVIC_DisableIRQ(irq);
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
}
|
||||
|
||||
// missing from CMSIS: Check if interrupt is enabled or not
|
||||
static bool NVIC_GetEnabledIRQ(IRQn_Type IRQn) {
|
||||
return (NVIC->ISER[(uint32_t)(IRQn) >> 5] & (1 << ((uint32_t)(IRQn) & 0x1F))) != 0;
|
||||
}
|
||||
|
||||
bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
|
||||
const tTimerConfig * const pConfig = &TimerConfig[timer_num];
|
||||
return (pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_IMR & TC_IMR_CPCS) != 0;
|
||||
IRQn_Type irq = TimerConfig[timer_num].IRQ_Id;
|
||||
return NVIC_GetEnabledIRQ(irq);
|
||||
}
|
||||
|
||||
#endif // ARDUINO_ARCH_SAM
|
||||
|
@ -118,8 +118,6 @@ void HAL_timer_enable_interrupt(const uint8_t timer_num);
|
||||
void HAL_timer_disable_interrupt(const uint8_t timer_num);
|
||||
bool HAL_timer_interrupt_enabled(const uint8_t timer_num);
|
||||
|
||||
//void HAL_timer_isr_prologue(const uint8_t timer_num);
|
||||
|
||||
FORCE_INLINE static void HAL_timer_isr_prologue(const uint8_t timer_num) {
|
||||
const tTimerConfig * const pConfig = &TimerConfig[timer_num];
|
||||
// Reading the status register clears the interrupt flag
|
||||
|
@ -245,6 +245,11 @@
|
||||
// Disable UART interrupt in NVIC
|
||||
NVIC_DisableIRQ( HWUART_IRQ );
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
// Disable clock
|
||||
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
||||
|
||||
@ -290,6 +295,11 @@
|
||||
// Disable UART interrupt in NVIC
|
||||
NVIC_DisableIRQ( HWUART_IRQ );
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
||||
}
|
||||
|
||||
|
@ -24,7 +24,7 @@
|
||||
* Endstop Interrupts
|
||||
*
|
||||
* Without endstop interrupts the endstop pins must be polled continually in
|
||||
* the stepper-ISR via endstops.update(), most of the time finding no change.
|
||||
* the temperature-ISR via endstops.update(), most of the time finding no change.
|
||||
* With this feature endstops.update() is called only when we know that at
|
||||
* least one endstop has changed state, saving valuable CPU cycles.
|
||||
*
|
||||
@ -37,16 +37,10 @@
|
||||
#ifndef _ENDSTOP_INTERRUPTS_H_
|
||||
#define _ENDSTOP_INTERRUPTS_H_
|
||||
|
||||
volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
|
||||
// Must be reset to 0 by the test function when finished.
|
||||
|
||||
// This is what is really done inside the interrupts.
|
||||
FORCE_INLINE void endstop_ISR_worker( void ) {
|
||||
e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice.
|
||||
}
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR(void) { endstop_ISR_worker(); }
|
||||
void endstop_ISR(void) { endstops.check_possible_change(); }
|
||||
|
||||
/**
|
||||
* Endstop interrupts for Due based targets.
|
||||
|
@ -68,6 +68,11 @@ void watchdogSetup(void) {
|
||||
// Disable WDT interrupt (just in case, to avoid triggering it!)
|
||||
NVIC_DisableIRQ(WDT_IRQn);
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
// Initialize WDT with the given parameters
|
||||
WDT_Enable(WDT, value);
|
||||
|
||||
|
@ -23,7 +23,7 @@
|
||||
/**
|
||||
* Description:
|
||||
*
|
||||
* For TARGET_LPC1768
|
||||
* Timers for LPC1768
|
||||
*/
|
||||
|
||||
#ifdef TARGET_LPC1768
|
||||
@ -32,62 +32,35 @@
|
||||
#include "HAL_timers.h"
|
||||
|
||||
void HAL_timer_init(void) {
|
||||
SBI(LPC_SC->PCONP, 1); // power on timer0
|
||||
SBI(LPC_SC->PCONP, SBIT_TIMER0); // Power ON Timer 0
|
||||
LPC_TIM0->PR = (HAL_TIMER_RATE) / (HAL_STEPPER_TIMER_RATE) - 1; // Use prescaler to set frequency if needed
|
||||
|
||||
SBI(LPC_SC->PCONP, 2); // power on timer1
|
||||
SBI(LPC_SC->PCONP, SBIT_TIMER1); // Power ON Timer 1
|
||||
LPC_TIM1->PR = (HAL_TIMER_RATE) / 1000000 - 1;
|
||||
}
|
||||
|
||||
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
|
||||
switch (timer_num) {
|
||||
case 0:
|
||||
LPC_TIM0->MCR = 3; // Match on MR0, reset on MR0
|
||||
LPC_TIM0->MCR = _BV(SBIT_MR0I) | _BV(SBIT_MR0R); // Match on MR0, reset on MR0, interrupts when NVIC enables them
|
||||
LPC_TIM0->MR0 = uint32_t(HAL_STEPPER_TIMER_RATE) / frequency; // Match value (period) to set frequency
|
||||
LPC_TIM0->TCR = _BV(0); // enable
|
||||
LPC_TIM0->TCR = _BV(SBIT_CNTEN); // Counter Enable
|
||||
|
||||
NVIC_SetPriority(TIMER0_IRQn, NVIC_EncodePriority(0, 1, 0));
|
||||
NVIC_EnableIRQ(TIMER0_IRQn);
|
||||
break;
|
||||
|
||||
case 1:
|
||||
LPC_TIM1->MCR = 3;
|
||||
LPC_TIM1->MCR = _BV(SBIT_MR0I) | _BV(SBIT_MR0R); // Match on MR0, reset on MR0, interrupts when NVIC enables them
|
||||
LPC_TIM1->MR0 = uint32_t(HAL_TEMP_TIMER_RATE) / frequency;
|
||||
LPC_TIM1->TCR = _BV(0);
|
||||
LPC_TIM1->TCR = _BV(SBIT_CNTEN); // Counter Enable
|
||||
|
||||
NVIC_SetPriority(TIMER1_IRQn, NVIC_EncodePriority(0, 2, 0));
|
||||
NVIC_EnableIRQ(TIMER1_IRQn);
|
||||
break;
|
||||
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
|
||||
void HAL_timer_enable_interrupt(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0:
|
||||
NVIC_EnableIRQ(TIMER0_IRQn); // Enable interrupt handler
|
||||
NVIC_SetPriority(TIMER0_IRQn, NVIC_EncodePriority(0, 1, 0));
|
||||
break;
|
||||
case 1:
|
||||
NVIC_EnableIRQ(TIMER1_IRQn);
|
||||
NVIC_SetPriority(TIMER1_IRQn, NVIC_EncodePriority(0, 2, 0));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void HAL_timer_disable_interrupt(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: NVIC_DisableIRQ(TIMER0_IRQn); break; // disable interrupt handler
|
||||
case 1: NVIC_DisableIRQ(TIMER1_IRQn); break;
|
||||
}
|
||||
}
|
||||
|
||||
bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: return NVIC_GetActive(TIMER0_IRQn);
|
||||
case 1: return NVIC_GetActive(TIMER1_IRQn);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void HAL_timer_isr_prologue(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: SBI(LPC_TIM0->IR, 0); break; // Clear the Interrupt
|
||||
case 1: SBI(LPC_TIM1->IR, 0); break;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // TARGET_LPC1768
|
||||
|
@ -34,18 +34,42 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "../../core/macros.h"
|
||||
|
||||
#define SBIT_TIMER0 1
|
||||
#define SBIT_TIMER1 2
|
||||
|
||||
#define SBIT_CNTEN 0
|
||||
|
||||
#define SBIT_MR0I 0 // Timer 0 Interrupt when TC matches MR0
|
||||
#define SBIT_MR0R 1 // Timer 0 Reset TC on Match
|
||||
#define SBIT_MR0S 2 // Timer 0 Stop TC and PC on Match
|
||||
#define SBIT_MR1I 3
|
||||
#define SBIT_MR1R 4
|
||||
#define SBIT_MR1S 5
|
||||
#define SBIT_MR2I 6
|
||||
#define SBIT_MR2R 7
|
||||
#define SBIT_MR2S 8
|
||||
#define SBIT_MR3I 9
|
||||
#define SBIT_MR3R 10
|
||||
#define SBIT_MR3S 11
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Defines
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
#define _HAL_TIMER(T) _CAT(LPC_TIM, T)
|
||||
#define _HAL_TIMER_IRQ(T) TIMER##T##_IRQn
|
||||
#define __HAL_TIMER_ISR(T) extern "C" void TIMER##T##_IRQHandler(void)
|
||||
#define _HAL_TIMER_ISR(T) __HAL_TIMER_ISR(T)
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
|
||||
|
||||
#define STEP_TIMER_NUM 0 // index of timer to use for stepper
|
||||
#define TEMP_TIMER_NUM 1 // index of timer to use for temperature
|
||||
#define STEP_TIMER_NUM 0 // Timer Index for Stepper
|
||||
#define TEMP_TIMER_NUM 1 // Timer Index for Temperature
|
||||
#define PULSE_TIMER_NUM STEP_TIMER_NUM
|
||||
#define PWM_TIMER_NUM 3 // Timer Index for PWM
|
||||
|
||||
#define HAL_TIMER_RATE ((SystemCoreClock) / 4) // frequency of timers peripherals
|
||||
#define HAL_STEPPER_TIMER_RATE HAL_TIMER_RATE // frequency of stepper timer (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE)
|
||||
@ -66,21 +90,12 @@ typedef uint32_t hal_timer_t;
|
||||
#define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(TEMP_TIMER_NUM)
|
||||
#define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(TEMP_TIMER_NUM)
|
||||
|
||||
#define HAL_STEP_TIMER_ISR extern "C" void TIMER0_IRQHandler(void)
|
||||
#define HAL_TEMP_TIMER_ISR extern "C" void TIMER1_IRQHandler(void)
|
||||
#define HAL_STEP_TIMER_ISR _HAL_TIMER_ISR(STEP_TIMER_NUM)
|
||||
#define HAL_TEMP_TIMER_ISR _HAL_TIMER_ISR(TEMP_TIMER_NUM)
|
||||
|
||||
// PWM timer
|
||||
#define HAL_PWM_TIMER LPC_TIM3
|
||||
#define HAL_PWM_TIMER_ISR extern "C" void TIMER3_IRQHandler(void)
|
||||
#define HAL_PWM_TIMER_IRQn TIMER3_IRQn
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Types
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Public Variables
|
||||
// --------------------------------------------------------------------------
|
||||
// Timer references by index
|
||||
#define STEP_TIMER _HAL_TIMER(STEP_TIMER_NUM)
|
||||
#define TEMP_TIMER _HAL_TIMER(TEMP_TIMER_NUM)
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Public functions
|
||||
@ -90,31 +105,23 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency);
|
||||
|
||||
FORCE_INLINE static void HAL_timer_set_compare(const uint8_t timer_num, const hal_timer_t compare) {
|
||||
switch (timer_num) {
|
||||
case 0:
|
||||
LPC_TIM0->MR0 = compare;
|
||||
if (LPC_TIM0->TC > compare)
|
||||
LPC_TIM0->TC = compare - 5; // generate an immediate stepper ISR
|
||||
break;
|
||||
case 1:
|
||||
LPC_TIM1->MR0 = compare;
|
||||
if (LPC_TIM1->TC > compare)
|
||||
LPC_TIM1->TC = compare - 5; // make sure we don't have one extra long period
|
||||
break;
|
||||
case 0: STEP_TIMER->MR0 = compare; break; // Stepper Timer Match Register 0
|
||||
case 1: TEMP_TIMER->MR0 = compare; break; // Temp Timer Match Register 0
|
||||
}
|
||||
}
|
||||
|
||||
FORCE_INLINE static hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: return LPC_TIM0->MR0;
|
||||
case 1: return LPC_TIM1->MR0;
|
||||
case 0: return STEP_TIMER->MR0; // Stepper Timer Match Register 0
|
||||
case 1: return TEMP_TIMER->MR0; // Temp Timer Match Register 0
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
FORCE_INLINE static hal_timer_t HAL_timer_get_count(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: return LPC_TIM0->TC;
|
||||
case 1: return LPC_TIM1->TC;
|
||||
case 0: return STEP_TIMER->TC; // Stepper Timer Count
|
||||
case 1: return TEMP_TIMER->TC; // Temp Timer Count
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -124,10 +131,45 @@ FORCE_INLINE static void HAL_timer_restrain(const uint8_t timer_num, const uint1
|
||||
if (HAL_timer_get_compare(timer_num) < mincmp) HAL_timer_set_compare(timer_num, mincmp);
|
||||
}
|
||||
|
||||
void HAL_timer_enable_interrupt(const uint8_t timer_num);
|
||||
void HAL_timer_disable_interrupt(const uint8_t timer_num);
|
||||
bool HAL_timer_interrupt_enabled(const uint8_t timer_num);
|
||||
void HAL_timer_isr_prologue(const uint8_t timer_num);
|
||||
FORCE_INLINE static void HAL_timer_enable_interrupt(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: NVIC_EnableIRQ(TIMER0_IRQn); // Enable interrupt handler
|
||||
case 1: NVIC_EnableIRQ(TIMER1_IRQn); // Enable interrupt handler
|
||||
}
|
||||
}
|
||||
|
||||
FORCE_INLINE static void HAL_timer_disable_interrupt(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: NVIC_DisableIRQ(TIMER0_IRQn); // Disable interrupt handler
|
||||
case 1: NVIC_DisableIRQ(TIMER1_IRQn); // Disable interrupt handler
|
||||
}
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
}
|
||||
|
||||
// This function is missing from CMSIS
|
||||
FORCE_INLINE static bool NVIC_GetEnableIRQ(IRQn_Type IRQn) {
|
||||
return (NVIC->ISER[((uint32_t)IRQn) >> 5] & (1 << ((uint32_t)IRQn) & 0x1F)) != 0;
|
||||
}
|
||||
|
||||
FORCE_INLINE static bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: return NVIC_GetEnableIRQ(TIMER0_IRQn); // Check if interrupt is enabled or not
|
||||
case 1: return NVIC_GetEnableIRQ(TIMER1_IRQn); // Check if interrupt is enabled or not
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
FORCE_INLINE static void HAL_timer_isr_prologue(const uint8_t timer_num) {
|
||||
switch (timer_num) {
|
||||
case 0: SBI(STEP_TIMER->IR, SBIT_CNTEN); break;
|
||||
case 1: SBI(TEMP_TIMER->IR, SBIT_CNTEN); break;
|
||||
}
|
||||
}
|
||||
|
||||
#define HAL_timer_isr_epilogue(TIMER_NUM)
|
||||
|
||||
#endif // _HAL_TIMERS_DUE_H
|
||||
#endif // _HAL_TIMERS_H
|
||||
|
@ -78,12 +78,14 @@
|
||||
|
||||
#define NUM_ISR_PWMS 20
|
||||
|
||||
#define HAL_PWM_TIMER LPC_TIM3
|
||||
#define HAL_PWM_TIMER_ISR extern "C" void TIMER3_IRQHandler(void)
|
||||
#define HAL_PWM_TIMER_IRQn TIMER3_IRQn
|
||||
|
||||
#define LPC_PORT_OFFSET (0x0020)
|
||||
#define LPC_PIN(pin) (1UL << pin)
|
||||
#define LPC_GPIO(port) ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port))
|
||||
|
||||
|
||||
typedef struct { // holds all data needed to control/init one of the PWM channels
|
||||
bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
|
||||
pin_t pin;
|
||||
@ -256,6 +258,11 @@ bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* =
|
||||
// OK to update the active table because the
|
||||
// ISR doesn't use any of the changed items
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
if (ISR_table_update) //use work table if that's the newest
|
||||
temp_table = work_table;
|
||||
else
|
||||
@ -340,6 +347,11 @@ bool LPC1768_PWM_detach_pin(pin_t pin) {
|
||||
//// interrupt controlled PWM code
|
||||
NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
if (ISR_table_update) {
|
||||
ISR_table_update = false; // don't update yet - have another update to do
|
||||
NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts
|
||||
@ -426,6 +438,12 @@ bool LPC1768_PWM_write(pin_t pin, uint32_t value) {
|
||||
|
||||
//// interrupt controlled PWM code
|
||||
NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
if (!ISR_table_update) // use the most up to date table
|
||||
COPY_ACTIVE_TABLE; // copy active table into work table
|
||||
|
||||
@ -454,6 +472,11 @@ bool useable_hardware_PWM(pin_t pin) {
|
||||
|
||||
NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
|
||||
bool return_flag = false;
|
||||
for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // see if it's already setup
|
||||
if (active_table[i].pin == pin) return_flag = true;
|
||||
|
@ -24,7 +24,7 @@
|
||||
* Endstop Interrupts
|
||||
*
|
||||
* Without endstop interrupts the endstop pins must be polled continually in
|
||||
* the stepper-ISR via endstops.update(), most of the time finding no change.
|
||||
* the temperature-ISR via endstops.update(), most of the time finding no change.
|
||||
* With this feature endstops.update() is called only when we know that at
|
||||
* least one endstop has changed state, saving valuable CPU cycles.
|
||||
*
|
||||
@ -40,16 +40,10 @@
|
||||
//Currently this is untested and broken
|
||||
#error "Please disable Endstop Interrupts LPC176x is currently an unsupported platform"
|
||||
|
||||
volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
|
||||
// Must be reset to 0 by the test function when finished.
|
||||
|
||||
// This is what is really done inside the interrupts.
|
||||
FORCE_INLINE void endstop_ISR_worker( void ) {
|
||||
e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice.
|
||||
}
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR(void) { endstop_ISR_worker(); }
|
||||
void endstop_ISR(void) { endstops.check_possible_change(); }
|
||||
|
||||
void setup_endstop_interrupts(void) {
|
||||
#if HAS_X_MAX
|
||||
|
@ -36,7 +36,7 @@
|
||||
* Endstop Interrupts
|
||||
*
|
||||
* Without endstop interrupts the endstop pins must be polled continually in
|
||||
* the stepper-ISR via endstops.update(), most of the time finding no change.
|
||||
* the temperature-ISR via endstops.update(), most of the time finding no change.
|
||||
* With this feature endstops.update() is called only when we know that at
|
||||
* least one endstop has changed state, saving valuable CPU cycles.
|
||||
*
|
||||
@ -49,16 +49,10 @@
|
||||
#ifndef _ENDSTOP_INTERRUPTS_H_
|
||||
#define _ENDSTOP_INTERRUPTS_H_
|
||||
|
||||
volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
|
||||
// Must be reset to 0 by the test function when finished.
|
||||
|
||||
// This is what is really done inside the interrupts.
|
||||
FORCE_INLINE void endstop_ISR_worker( void ) {
|
||||
e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice.
|
||||
}
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR(void) { endstop_ISR_worker(); }
|
||||
void endstop_ISR(void) { endstops.check_possible_change(); }
|
||||
|
||||
void setup_endstop_interrupts(void) {
|
||||
#if HAS_X_MAX
|
||||
|
@ -123,6 +123,11 @@ void HAL_timer_enable_interrupt(const uint8_t timer_num) {
|
||||
|
||||
void HAL_timer_disable_interrupt(const uint8_t timer_num) {
|
||||
HAL_NVIC_DisableIRQ(timerConfig[timer_num].IRQ_Id);
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
}
|
||||
|
||||
hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) {
|
||||
|
@ -24,16 +24,10 @@
|
||||
#ifndef _ENDSTOP_INTERRUPTS_H_
|
||||
#define _ENDSTOP_INTERRUPTS_H_
|
||||
|
||||
volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
|
||||
// Must be reset to 0 by the test function when finished.
|
||||
|
||||
// This is what is really done inside the interrupts.
|
||||
FORCE_INLINE void endstop_ISR_worker( void ) {
|
||||
e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice.
|
||||
}
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR(void) { endstop_ISR_worker(); }
|
||||
void endstop_ISR(void) { endstops.check_possible_change(); }
|
||||
|
||||
void setup_endstop_interrupts(void) {
|
||||
#if HAS_X_MAX
|
||||
|
@ -127,6 +127,11 @@ void HAL_timer_enable_interrupt(const uint8_t timer_num) {
|
||||
|
||||
void HAL_timer_disable_interrupt(const uint8_t timer_num) {
|
||||
HAL_NVIC_DisableIRQ(timerConfig[timer_num].IRQ_Id);
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
}
|
||||
|
||||
hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) {
|
||||
|
@ -26,16 +26,10 @@
|
||||
#ifndef _ENDSTOP_INTERRUPTS_H_
|
||||
#define _ENDSTOP_INTERRUPTS_H_
|
||||
|
||||
volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
|
||||
// Must be reset to 0 by the test function when finished.
|
||||
|
||||
// This is what is really done inside the interrupts.
|
||||
FORCE_INLINE void endstop_ISR_worker( void ) {
|
||||
e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice.
|
||||
}
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR(void) { endstop_ISR_worker(); }
|
||||
void endstop_ISR(void) { endstops.check_possible_change(); }
|
||||
|
||||
void setup_endstop_interrupts(void) {
|
||||
#if HAS_X_MAX
|
||||
|
@ -29,6 +29,22 @@
|
||||
#include "HAL.h"
|
||||
#include "HAL_timers_Teensy.h"
|
||||
|
||||
/** \brief Instruction Synchronization Barrier
|
||||
Instruction Synchronization Barrier flushes the pipeline in the processor,
|
||||
so that all instructions following the ISB are fetched from cache or
|
||||
memory, after the instruction has been completed.
|
||||
*/
|
||||
FORCE_INLINE static void __ISB(void) {
|
||||
__asm__ __volatile__("isb 0xF":::"memory");
|
||||
}
|
||||
|
||||
/** \brief Data Synchronization Barrier
|
||||
This function acts as a special kind of Data Memory Barrier.
|
||||
It completes when all explicit memory accesses before this instruction complete.
|
||||
*/
|
||||
FORCE_INLINE static void __DSB(void) {
|
||||
__asm__ __volatile__("dsb 0xF":::"memory");
|
||||
}
|
||||
|
||||
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
|
||||
switch (timer_num) {
|
||||
@ -65,6 +81,11 @@ void HAL_timer_disable_interrupt(const uint8_t timer_num) {
|
||||
case 0: NVIC_DISABLE_IRQ(IRQ_FTM0); break;
|
||||
case 1: NVIC_DISABLE_IRQ(IRQ_FTM1); break;
|
||||
}
|
||||
|
||||
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
||||
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
||||
__DSB();
|
||||
__ISB();
|
||||
}
|
||||
|
||||
bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
|
||||
|
@ -24,7 +24,7 @@
|
||||
* Endstop Interrupts
|
||||
*
|
||||
* Without endstop interrupts the endstop pins must be polled continually in
|
||||
* the stepper-ISR via endstops.update(), most of the time finding no change.
|
||||
* the temperature-ISR via endstops.update(), most of the time finding no change.
|
||||
* With this feature endstops.update() is called only when we know that at
|
||||
* least one endstop has changed state, saving valuable CPU cycles.
|
||||
*
|
||||
@ -37,16 +37,10 @@
|
||||
#ifndef _ENDSTOP_INTERRUPTS_H_
|
||||
#define _ENDSTOP_INTERRUPTS_H_
|
||||
|
||||
volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
|
||||
// Must be reset to 0 by the test function when finished.
|
||||
|
||||
// This is what is really done inside the interrupts.
|
||||
FORCE_INLINE void endstop_ISR_worker( void ) {
|
||||
e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice.
|
||||
}
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR(void) { endstop_ISR_worker(); }
|
||||
void endstop_ISR(void) { endstops.check_possible_change(); }
|
||||
|
||||
/**
|
||||
* Endstop interrupts for Due based targets.
|
||||
|
@ -95,10 +95,6 @@
|
||||
#include "feature/I2CPositionEncoder.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
#include HAL_PATH(HAL, endstop_interrupts.h)
|
||||
#endif
|
||||
|
||||
#if HAS_TRINAMIC
|
||||
#include "feature/tmc_util.h"
|
||||
#endif
|
||||
@ -269,7 +265,7 @@ bool pin_is_protected(const pin_t pin) {
|
||||
}
|
||||
|
||||
void quickstop_stepper() {
|
||||
stepper.quick_stop();
|
||||
planner.quick_stop();
|
||||
planner.synchronize();
|
||||
set_current_from_steppers_for_axis(ALL_AXES);
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
@ -748,7 +744,9 @@ void setup() {
|
||||
|
||||
print_job_timer.init(); // Initial setup of print job timer
|
||||
|
||||
stepper.init(); // Initialize stepper, this enables interrupts!
|
||||
endstops.init(); // Init endstops and pullups
|
||||
|
||||
stepper.init(); // Init stepper. This enables interrupts!
|
||||
|
||||
#if HAS_SERVOS
|
||||
servo_init();
|
||||
@ -860,10 +858,6 @@ void setup() {
|
||||
i2c.onRequest(i2c_on_request);
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
setup_endstop_interrupts();
|
||||
#endif
|
||||
|
||||
#if DO_SWITCH_EXTRUDER
|
||||
move_extruder_servo(0); // Initialize extruder servo
|
||||
#endif
|
||||
|
@ -73,7 +73,6 @@ static uint8_t LEDs[8] = { 0 };
|
||||
#endif
|
||||
|
||||
void Max7219_PutByte(uint8_t data) {
|
||||
CRITICAL_SECTION_START;
|
||||
for (uint8_t i = 8; i--;) {
|
||||
SIG_DELAY();
|
||||
WRITE(MAX7219_CLK_PIN, LOW); // tick
|
||||
@ -84,12 +83,10 @@ void Max7219_PutByte(uint8_t data) {
|
||||
SIG_DELAY();
|
||||
data <<= 1;
|
||||
}
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
void Max7219(const uint8_t reg, const uint8_t data) {
|
||||
SIG_DELAY();
|
||||
CRITICAL_SECTION_START;
|
||||
WRITE(MAX7219_LOAD_PIN, LOW); // begin
|
||||
SIG_DELAY();
|
||||
Max7219_PutByte(reg); // specify register
|
||||
@ -99,7 +96,6 @@ void Max7219(const uint8_t reg, const uint8_t data) {
|
||||
WRITE(MAX7219_LOAD_PIN, LOW); // and tell the chip to load the data
|
||||
SIG_DELAY();
|
||||
WRITE(MAX7219_LOAD_PIN, HIGH);
|
||||
CRITICAL_SECTION_END;
|
||||
SIG_DELAY();
|
||||
}
|
||||
|
||||
|
@ -262,7 +262,8 @@
|
||||
z_position = end[Z_AXIS];
|
||||
}
|
||||
|
||||
planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
|
||||
if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder))
|
||||
break;
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
@ -319,7 +320,8 @@
|
||||
e_position = end[E_AXIS];
|
||||
z_position = end[Z_AXIS];
|
||||
}
|
||||
planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
|
||||
if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder))
|
||||
break;
|
||||
current_yi += dyi;
|
||||
yi_cnt--;
|
||||
}
|
||||
@ -342,7 +344,8 @@
|
||||
z_position = end[Z_AXIS];
|
||||
}
|
||||
|
||||
planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
|
||||
if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder))
|
||||
break;
|
||||
current_xi += dxi;
|
||||
xi_cnt--;
|
||||
}
|
||||
|
@ -33,7 +33,7 @@
|
||||
void GcodeSuite::M540() {
|
||||
|
||||
if (parser.seen('S'))
|
||||
stepper.abort_on_endstop_hit = parser.value_bool();
|
||||
planner.abort_on_endstop_hit = parser.value_bool();
|
||||
|
||||
}
|
||||
|
||||
|
@ -47,7 +47,7 @@ void GcodeSuite::M18_M84() {
|
||||
else {
|
||||
bool all_axis = !(parser.seen('X') || parser.seen('Y') || parser.seen('Z') || parser.seen('E'));
|
||||
if (all_axis) {
|
||||
stepper.finish_and_disable();
|
||||
planner.finish_and_disable();
|
||||
}
|
||||
else {
|
||||
planner.synchronize();
|
||||
|
@ -95,7 +95,7 @@
|
||||
*/
|
||||
void GcodeSuite::M81() {
|
||||
thermalManager.disable_all_heaters();
|
||||
stepper.finish_and_disable();
|
||||
planner.finish_and_disable();
|
||||
|
||||
#if FAN_COUNT > 0
|
||||
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
|
||||
|
@ -197,14 +197,17 @@ void plan_arc(
|
||||
// i.e., Complete the angular vector in the given time.
|
||||
inverse_kinematics(raw);
|
||||
ADJUST_DELTA(raw);
|
||||
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
|
||||
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder))
|
||||
break;
|
||||
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
|
||||
#elif HAS_UBL_AND_CURVES
|
||||
float pos[XYZ] = { raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS] };
|
||||
planner.apply_leveling(pos);
|
||||
planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_AXIS], fr_mm_s, active_extruder);
|
||||
if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_AXIS], fr_mm_s, active_extruder))
|
||||
break;
|
||||
#else
|
||||
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
|
||||
if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder))
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -2421,12 +2421,10 @@ void lcd_quick_feedback(const bool clear_buttons) {
|
||||
|
||||
void _lcd_do_nothing() {}
|
||||
void _lcd_hard_stop() {
|
||||
stepper.quick_stop();
|
||||
const screenFunc_t old_screen = currentScreen;
|
||||
currentScreen = _lcd_do_nothing;
|
||||
while (planner.movesplanned()) idle();
|
||||
planner.quick_stop();
|
||||
currentScreen = old_screen;
|
||||
stepper.cleaning_buffer_counter = 0;
|
||||
set_current_from_steppers_for_axis(ALL_AXES);
|
||||
sync_plan_position();
|
||||
}
|
||||
@ -3856,7 +3854,7 @@ void lcd_quick_feedback(const bool clear_buttons) {
|
||||
|
||||
// M540 S - Abort on endstop hit when SD printing
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit);
|
||||
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &planner.abort_on_endstop_hit);
|
||||
#endif
|
||||
|
||||
END_MENU();
|
||||
|
@ -32,18 +32,27 @@
|
||||
#include "../module/temperature.h"
|
||||
#include "../lcd/ultralcd.h"
|
||||
|
||||
// TEST_ENDSTOP: test the old and the current status of an endstop
|
||||
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
#include HAL_PATH(../HAL, endstop_interrupts.h)
|
||||
#endif
|
||||
|
||||
// TEST_ENDSTOP: test the current status of an endstop
|
||||
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP))
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
#define ENDSTOPS_ENABLED (endstops.enabled || endstops.z_probe_enabled)
|
||||
#else
|
||||
#define ENDSTOPS_ENABLED endstops.enabled
|
||||
#endif
|
||||
|
||||
Endstops endstops;
|
||||
|
||||
// public:
|
||||
|
||||
bool Endstops::enabled, Endstops::enabled_globally; // Initialized by settings.load()
|
||||
volatile char Endstops::endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
||||
volatile uint8_t Endstops::endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
||||
|
||||
Endstops::esbits_t Endstops::current_endstop_bits = 0,
|
||||
Endstops::old_endstop_bits = 0;
|
||||
Endstops::esbits_t Endstops::current_endstop_bits = 0;
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
volatile bool Endstops::z_probe_enabled = false;
|
||||
@ -196,8 +205,93 @@ void Endstops::init() {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
setup_endstop_interrupts();
|
||||
#endif
|
||||
|
||||
// Enable endstops
|
||||
enable_globally(
|
||||
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
|
||||
true
|
||||
#else
|
||||
false
|
||||
#endif
|
||||
);
|
||||
|
||||
} // Endstops::init
|
||||
|
||||
// Called from ISR. A change was detected. Find out what happened!
|
||||
void Endstops::check_possible_change() { if (ENDSTOPS_ENABLED) endstops.update(); }
|
||||
|
||||
// Called from ISR: Poll endstop state if required
|
||||
void Endstops::poll() {
|
||||
|
||||
#if ENABLED(PINS_DEBUGGING)
|
||||
endstops.run_monitor(); // report changes in endstop status
|
||||
#endif
|
||||
|
||||
#if DISABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
if (ENDSTOPS_ENABLED) endstops.update();
|
||||
#endif
|
||||
}
|
||||
|
||||
void Endstops::enable_globally(const bool onoff) {
|
||||
enabled_globally = enabled = onoff;
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
if (onoff) endstops.update(); // If enabling, update state now
|
||||
#endif
|
||||
}
|
||||
|
||||
// Enable / disable endstop checking
|
||||
void Endstops::enable(const bool onoff) {
|
||||
enabled = onoff;
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
if (onoff) endstops.update(); // If enabling, update state now
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
|
||||
void Endstops::not_homing() {
|
||||
enabled = enabled_globally;
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
if (enabled) endstops.update(); // If enabling, update state now
|
||||
#endif
|
||||
}
|
||||
|
||||
// Clear endstops (i.e., they were hit intentionally) to suppress the report
|
||||
void Endstops::hit_on_purpose() {
|
||||
endstop_hit_bits = 0;
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
if (enabled) endstops.update(); // If enabling, update state now
|
||||
#endif
|
||||
}
|
||||
|
||||
// Enable / disable endstop z-probe checking
|
||||
#if HAS_BED_PROBE
|
||||
void Endstops::enable_z_probe(bool onoff) {
|
||||
z_probe_enabled = onoff;
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
if (enabled) endstops.update(); // If enabling, update state now
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(PINS_DEBUGGING)
|
||||
void Endstops::run_monitor() {
|
||||
if (!monitor_flag) return;
|
||||
static uint8_t monitor_count = 16; // offset this check from the others
|
||||
monitor_count += _BV(1); // 15 Hz
|
||||
monitor_count &= 0x7F;
|
||||
if (!monitor_count) monitor(); // report changes in endstop status
|
||||
}
|
||||
#endif
|
||||
|
||||
void Endstops::report_state() {
|
||||
if (endstop_hit_bits) {
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
@ -208,7 +302,7 @@ void Endstops::report_state() {
|
||||
#endif
|
||||
|
||||
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
|
||||
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(_AXIS(A))); \
|
||||
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", planner.triggered_position_mm(_AXIS(A))); \
|
||||
_SET_STOP_CHAR(A,C); }while(0)
|
||||
|
||||
#define _ENDSTOP_HIT_TEST(A,C) \
|
||||
@ -238,7 +332,7 @@ void Endstops::report_state() {
|
||||
hit_on_purpose();
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
|
||||
if (stepper.abort_on_endstop_hit) {
|
||||
if (planner.abort_on_endstop_hit) {
|
||||
card.sdprinting = false;
|
||||
card.closefile();
|
||||
quickstop_stepper();
|
||||
@ -300,38 +394,41 @@ void Endstops::M119() {
|
||||
#endif
|
||||
} // Endstops::M119
|
||||
|
||||
// The following routines are called from an ISR context. It could be the temperature ISR, the
|
||||
// endstop ISR or the Stepper ISR.
|
||||
|
||||
#if ENABLED(X_DUAL_ENDSTOPS)
|
||||
void Endstops::test_dual_x_endstops(const EndstopEnum es1, const EndstopEnum es2) {
|
||||
const byte x_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for X, bit 1 for X2
|
||||
if (x_test && stepper.current_block->steps[X_AXIS] > 0) {
|
||||
if (x_test && stepper.movement_non_null(X_AXIS)) {
|
||||
SBI(endstop_hit_bits, X_MIN);
|
||||
if (!stepper.performing_homing || (x_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
stepper.kill_current_block();
|
||||
stepper.quick_stop();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if ENABLED(Y_DUAL_ENDSTOPS)
|
||||
void Endstops::test_dual_y_endstops(const EndstopEnum es1, const EndstopEnum es2) {
|
||||
const byte y_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Y, bit 1 for Y2
|
||||
if (y_test && stepper.current_block->steps[Y_AXIS] > 0) {
|
||||
if (y_test && stepper.movement_non_null(Y_AXIS)) {
|
||||
SBI(endstop_hit_bits, Y_MIN);
|
||||
if (!stepper.performing_homing || (y_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
stepper.kill_current_block();
|
||||
stepper.quick_stop();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
void Endstops::test_dual_z_endstops(const EndstopEnum es1, const EndstopEnum es2) {
|
||||
const byte z_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Z, bit 1 for Z2
|
||||
if (z_test && stepper.current_block->steps[Z_AXIS] > 0) {
|
||||
if (z_test && stepper.movement_non_null(Z_AXIS)) {
|
||||
SBI(endstop_hit_bits, Z_MIN);
|
||||
if (!stepper.performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
stepper.kill_current_block();
|
||||
stepper.quick_stop();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Check endstops - Called from ISR!
|
||||
// Check endstops - Could be called from ISR!
|
||||
void Endstops::update() {
|
||||
|
||||
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
||||
@ -349,7 +446,7 @@ void Endstops::update() {
|
||||
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
|
||||
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX))) { \
|
||||
_ENDSTOP_HIT(AXIS, MINMAX); \
|
||||
stepper.endstop_triggered(_AXIS(AXIS)); \
|
||||
planner.endstop_triggered(_AXIS(AXIS)); \
|
||||
} \
|
||||
}while(0)
|
||||
|
||||
@ -358,9 +455,9 @@ void Endstops::update() {
|
||||
if (G38_move) {
|
||||
UPDATE_ENDSTOP_BIT(Z, MIN_PROBE);
|
||||
if (TEST_ENDSTOP(_ENDSTOP(Z, MIN_PROBE))) {
|
||||
if (stepper.current_block->steps[_AXIS(X)] > 0) { _ENDSTOP_HIT(X, MIN); stepper.endstop_triggered(_AXIS(X)); }
|
||||
else if (stepper.current_block->steps[_AXIS(Y)] > 0) { _ENDSTOP_HIT(Y, MIN); stepper.endstop_triggered(_AXIS(Y)); }
|
||||
else if (stepper.current_block->steps[_AXIS(Z)] > 0) { _ENDSTOP_HIT(Z, MIN); stepper.endstop_triggered(_AXIS(Z)); }
|
||||
if (stepper.movement_non_null(_AXIS(X))) { _ENDSTOP_HIT(X, MIN); planner.endstop_triggered(_AXIS(X)); }
|
||||
else if (stepper.movement_non_null(_AXIS(Y))) { _ENDSTOP_HIT(Y, MIN); planner.endstop_triggered(_AXIS(Y)); }
|
||||
else if (stepper.movement_non_null(_AXIS(Z))) { _ENDSTOP_HIT(Z, MIN); planner.endstop_triggered(_AXIS(Z)); }
|
||||
G38_endstop_hit = true;
|
||||
}
|
||||
}
|
||||
@ -371,7 +468,7 @@ void Endstops::update() {
|
||||
*/
|
||||
|
||||
#if IS_CORE
|
||||
#define S_(N) stepper.current_block->steps[CORE_AXIS_##N]
|
||||
#define S_(N) stepper.movement_non_null(CORE_AXIS_##N)
|
||||
#define D_(N) stepper.motor_direction(CORE_AXIS_##N)
|
||||
#endif
|
||||
|
||||
@ -391,7 +488,7 @@ void Endstops::update() {
|
||||
#define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) X_CMP D_(2)) )
|
||||
#define X_AXIS_HEAD X_HEAD
|
||||
#else
|
||||
#define X_MOVE_TEST stepper.current_block->steps[X_AXIS] > 0
|
||||
#define X_MOVE_TEST stepper.movement_non_null(X_AXIS)
|
||||
#define X_AXIS_HEAD X_AXIS
|
||||
#endif
|
||||
|
||||
@ -411,7 +508,7 @@ void Endstops::update() {
|
||||
#define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Y_CMP D_(2)) )
|
||||
#define Y_AXIS_HEAD Y_HEAD
|
||||
#else
|
||||
#define Y_MOVE_TEST stepper.current_block->steps[Y_AXIS] > 0
|
||||
#define Y_MOVE_TEST stepper.movement_non_null(Y_AXIS)
|
||||
#define Y_AXIS_HEAD Y_AXIS
|
||||
#endif
|
||||
|
||||
@ -431,13 +528,13 @@ void Endstops::update() {
|
||||
#define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Z_CMP D_(2)) )
|
||||
#define Z_AXIS_HEAD Z_HEAD
|
||||
#else
|
||||
#define Z_MOVE_TEST stepper.current_block->steps[Z_AXIS] > 0
|
||||
#define Z_MOVE_TEST stepper.movement_non_null(Z_AXIS)
|
||||
#define Z_AXIS_HEAD Z_AXIS
|
||||
#endif
|
||||
|
||||
// With Dual X, endstops are only checked in the homing direction for the active extruder
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
#define E0_ACTIVE stepper.current_block->active_extruder == 0
|
||||
#define E0_ACTIVE stepper.movement_extruder() == 0
|
||||
#define X_MIN_TEST ((X_HOME_DIR < 0 && E0_ACTIVE) || (X2_HOME_DIR < 0 && !E0_ACTIVE))
|
||||
#define X_MAX_TEST ((X_HOME_DIR > 0 && E0_ACTIVE) || (X2_HOME_DIR > 0 && !E0_ACTIVE))
|
||||
#else
|
||||
@ -448,8 +545,6 @@ void Endstops::update() {
|
||||
/**
|
||||
* Check and update endstops according to conditions
|
||||
*/
|
||||
if (stepper.current_block) {
|
||||
|
||||
if (X_MOVE_TEST) {
|
||||
if (stepper.motor_direction(X_AXIS_HEAD)) { // -direction
|
||||
#if HAS_X_MIN
|
||||
@ -563,11 +658,6 @@ void Endstops::update() {
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
} // stepper.current_block
|
||||
|
||||
old_endstop_bits = current_endstop_bits;
|
||||
|
||||
} // Endstops::update()
|
||||
|
||||
#if ENABLED(PINS_DEBUGGING)
|
||||
|
@ -51,7 +51,7 @@ class Endstops {
|
||||
public:
|
||||
|
||||
static bool enabled, enabled_globally;
|
||||
static volatile char endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
||||
static volatile uint8_t endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
||||
|
||||
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
||||
typedef uint16_t esbits_t;
|
||||
@ -68,23 +68,26 @@ class Endstops {
|
||||
typedef byte esbits_t;
|
||||
#endif
|
||||
|
||||
static esbits_t current_endstop_bits, old_endstop_bits;
|
||||
static esbits_t current_endstop_bits;
|
||||
|
||||
Endstops() {
|
||||
enable_globally(
|
||||
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
|
||||
true
|
||||
#else
|
||||
false
|
||||
#endif
|
||||
);
|
||||
};
|
||||
Endstops() {};
|
||||
|
||||
/**
|
||||
* Initialize the endstop pins
|
||||
*/
|
||||
static void init();
|
||||
|
||||
/**
|
||||
* A change was detected or presumed to be in endstops pins. Find out what
|
||||
* changed, if anything. Called from ISR contexts
|
||||
*/
|
||||
static void check_possible_change();
|
||||
|
||||
/**
|
||||
* Periodic call to poll endstops if required. Called from temperature ISR
|
||||
*/
|
||||
static void poll();
|
||||
|
||||
/**
|
||||
* Update the endstops bits from the pins
|
||||
*/
|
||||
@ -101,34 +104,28 @@ class Endstops {
|
||||
static void M119();
|
||||
|
||||
// Enable / disable endstop checking globally
|
||||
static void enable_globally(bool onoff=true) { enabled_globally = enabled = onoff; }
|
||||
static void enable_globally(const bool onoff=true);
|
||||
|
||||
// Enable / disable endstop checking
|
||||
static void enable(bool onoff=true) { enabled = onoff; }
|
||||
static void enable(const bool onoff=true);
|
||||
|
||||
// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
|
||||
static void not_homing() { enabled = enabled_globally; }
|
||||
static void not_homing();
|
||||
|
||||
// Clear endstops (i.e., they were hit intentionally) to suppress the report
|
||||
static void hit_on_purpose() { endstop_hit_bits = 0; }
|
||||
static void hit_on_purpose();
|
||||
|
||||
// Enable / disable endstop z-probe checking
|
||||
#if HAS_BED_PROBE
|
||||
static volatile bool z_probe_enabled;
|
||||
static void enable_z_probe(bool onoff=true) { z_probe_enabled = onoff; }
|
||||
static void enable_z_probe(bool onoff=true);
|
||||
#endif
|
||||
|
||||
// Debugging of endstops
|
||||
#if ENABLED(PINS_DEBUGGING)
|
||||
static bool monitor_flag;
|
||||
static void monitor();
|
||||
FORCE_INLINE static void run_monitor() {
|
||||
if (!monitor_flag) return;
|
||||
static uint8_t monitor_count = 16; // offset this check from the others
|
||||
monitor_count += _BV(1); // 15 Hz
|
||||
monitor_count &= 0x7F;
|
||||
if (!monitor_count) monitor(); // report changes in endstop status
|
||||
}
|
||||
static void run_monitor();
|
||||
#endif
|
||||
|
||||
private:
|
||||
@ -146,10 +143,4 @@ class Endstops {
|
||||
|
||||
extern Endstops endstops;
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
#define ENDSTOPS_ENABLED (endstops.enabled || endstops.z_probe_enabled)
|
||||
#else
|
||||
#define ENDSTOPS_ENABLED endstops.enabled
|
||||
#endif
|
||||
|
||||
#endif // __ENDSTOPS_H__
|
||||
|
@ -644,7 +644,8 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
||||
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
||||
// For SCARA scale the feed rate from mm/s to degrees/s
|
||||
// i.e., Complete the angular vector in the given time.
|
||||
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
|
||||
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder))
|
||||
break;
|
||||
/*
|
||||
SERIAL_ECHO(segments);
|
||||
SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);
|
||||
@ -654,7 +655,8 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
||||
//*/
|
||||
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
|
||||
#else
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm);
|
||||
if (!planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm))
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -746,7 +748,8 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
||||
idle();
|
||||
}
|
||||
LOOP_XYZE(i) raw[i] += segment_distance[i];
|
||||
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm);
|
||||
if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm))
|
||||
break;
|
||||
}
|
||||
|
||||
// Since segment_distance is only approximate,
|
||||
@ -848,14 +851,14 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
||||
}
|
||||
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
|
||||
for (uint8_t i = 0; i < 3; i++)
|
||||
planner.buffer_line(
|
||||
if (!planner.buffer_line(
|
||||
i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
|
||||
i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
|
||||
i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
|
||||
current_position[E_AXIS],
|
||||
i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
|
||||
active_extruder
|
||||
);
|
||||
active_extruder)
|
||||
) break;
|
||||
delayed_move_time = 0;
|
||||
active_extruder_parked = false;
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
@ -872,11 +875,11 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
||||
#endif
|
||||
// move duplicate extruder into correct duplication position.
|
||||
planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
planner.buffer_line(
|
||||
if (!planner.buffer_line(
|
||||
current_position[X_AXIS] + duplicate_extruder_x_offset,
|
||||
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
|
||||
planner.max_feedrate_mm_s[X_AXIS], 1
|
||||
);
|
||||
planner.max_feedrate_mm_s[X_AXIS], 1)
|
||||
) break;
|
||||
planner.synchronize();
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
extruder_duplication_enabled = true;
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -35,6 +35,7 @@
|
||||
#include "../Marlin.h"
|
||||
|
||||
#include "motion.h"
|
||||
#include "../gcode/queue.h"
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
#include "delta.h"
|
||||
@ -53,7 +54,7 @@ enum BlockFlagBit : char {
|
||||
// from a safe speed (in consideration of jerking from zero speed).
|
||||
BLOCK_BIT_NOMINAL_LENGTH,
|
||||
|
||||
// The block is busy
|
||||
// The block is busy, being interpreted by the stepper ISR
|
||||
BLOCK_BIT_BUSY,
|
||||
|
||||
// The block is segment 2+ of a longer move
|
||||
@ -84,18 +85,34 @@ typedef struct {
|
||||
|
||||
uint8_t flag; // Block flags (See BlockFlag enum above)
|
||||
|
||||
unsigned char active_extruder; // The extruder to move (if E move)
|
||||
// Fields used by the motion planner to manage acceleration
|
||||
float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
|
||||
entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
|
||||
max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
|
||||
millimeters, // The total travel of this block in mm
|
||||
acceleration; // acceleration mm/sec^2
|
||||
|
||||
union {
|
||||
// Data used by all move blocks
|
||||
struct {
|
||||
// Fields used by the Bresenham algorithm for tracing the line
|
||||
int32_t steps[NUM_AXIS]; // Step count along each axis
|
||||
uint32_t steps[NUM_AXIS]; // Step count along each axis
|
||||
};
|
||||
// Data used by all sync blocks
|
||||
struct {
|
||||
int32_t position[NUM_AXIS]; // New position to force when this sync block is executed
|
||||
};
|
||||
};
|
||||
uint32_t step_event_count; // The number of step events required to complete this block
|
||||
|
||||
uint8_t active_extruder; // The extruder to move (if E move)
|
||||
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
|
||||
#endif
|
||||
|
||||
// Settings for the trapezoid generator
|
||||
int32_t accelerate_until, // The index of the step event on which to stop acceleration
|
||||
uint32_t accelerate_until, // The index of the step event on which to stop acceleration
|
||||
decelerate_after; // The index of the step event on which to start decelerating
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
@ -105,7 +122,7 @@ typedef struct {
|
||||
uint32_t acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
|
||||
deceleration_time_inverse;
|
||||
#else
|
||||
int32_t acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||
uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||
#endif
|
||||
|
||||
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
||||
@ -119,13 +136,6 @@ typedef struct {
|
||||
float e_D_ratio;
|
||||
#endif
|
||||
|
||||
// Fields used by the motion planner to manage acceleration
|
||||
float nominal_speed, // The nominal speed for this block in mm/sec
|
||||
entry_speed, // Entry speed at previous-current junction in mm/sec
|
||||
max_entry_speed, // Maximum allowable junction entry speed in mm/sec
|
||||
millimeters, // The total travel of this block in mm
|
||||
acceleration; // acceleration mm/sec^2
|
||||
|
||||
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
|
||||
initial_rate, // The jerk-adjusted step rate at start of block
|
||||
final_rate, // The minimal rate at exit
|
||||
@ -166,6 +176,10 @@ class Planner {
|
||||
static block_t block_buffer[BLOCK_BUFFER_SIZE];
|
||||
static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
|
||||
block_buffer_tail; // Index of the busy block, if any
|
||||
static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
|
||||
static uint8_t delay_before_delivering, // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
|
||||
block_buffer_planned; // Index of the optimally planned block
|
||||
|
||||
|
||||
#if ENABLED(DISTINCT_E_FACTORS)
|
||||
static uint8_t last_extruder; // Respond to extruder change
|
||||
@ -233,6 +247,10 @@ class Planner {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
static bool abort_on_endstop_hit;
|
||||
#endif
|
||||
|
||||
private:
|
||||
|
||||
/**
|
||||
@ -247,9 +265,9 @@ class Planner {
|
||||
static float previous_speed[NUM_AXIS];
|
||||
|
||||
/**
|
||||
* Nominal speed of previous path line segment
|
||||
* Nominal speed of previous path line segment (mm/s)^2
|
||||
*/
|
||||
static float previous_nominal_speed;
|
||||
static float previous_nominal_speed_sqr;
|
||||
|
||||
/**
|
||||
* Limit where 64bit math is necessary for acceleration calculation
|
||||
@ -308,15 +326,6 @@ class Planner {
|
||||
// Manage fans, paste pressure, etc.
|
||||
static void check_axes_activity();
|
||||
|
||||
/**
|
||||
* Number of moves currently in the planner
|
||||
*/
|
||||
FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
|
||||
|
||||
FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; }
|
||||
|
||||
FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
|
||||
|
||||
// Update multipliers based on new diameter measurements
|
||||
static void calculate_volumetric_multipliers();
|
||||
|
||||
@ -424,16 +433,32 @@ class Planner {
|
||||
#define ARG_Z const float &rz
|
||||
#endif
|
||||
|
||||
// Number of moves currently in the planner
|
||||
FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
|
||||
|
||||
// Remove all blocks from the buffer
|
||||
FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; }
|
||||
|
||||
// Check if movement queue is full
|
||||
FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
|
||||
|
||||
// Get count of movement slots free
|
||||
FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
|
||||
|
||||
/**
|
||||
* Planner::get_next_free_block
|
||||
*
|
||||
* - Get the next head index (passed by reference)
|
||||
* - Wait for a space to open up in the planner
|
||||
* - Return the head block
|
||||
* - Get the next head indices (passed by reference)
|
||||
* - Wait for the number of spaces to open up in the planner
|
||||
* - Return the first head block
|
||||
*/
|
||||
FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head) {
|
||||
FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, uint8_t count = 1) {
|
||||
|
||||
// Wait until there are enough slots free
|
||||
while (moves_free() < count) { idle(); }
|
||||
|
||||
// Return the first available block
|
||||
next_buffer_head = next_block_index(block_buffer_head);
|
||||
while (block_buffer_tail == next_buffer_head) idle(); // while (is_full)
|
||||
return &block_buffer[block_buffer_head];
|
||||
}
|
||||
|
||||
@ -446,8 +471,30 @@ class Planner {
|
||||
* fr_mm_s - (target) speed of the move
|
||||
* extruder - target extruder
|
||||
* millimeters - the length of the movement, if known
|
||||
*
|
||||
* Returns true if movement was buffered, false otherwise
|
||||
*/
|
||||
static void _buffer_steps(const int32_t (&target)[XYZE]
|
||||
static bool _buffer_steps(const int32_t (&target)[XYZE]
|
||||
#if HAS_POSITION_FLOAT
|
||||
, const float (&target_float)[XYZE]
|
||||
#endif
|
||||
, float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
|
||||
);
|
||||
|
||||
/**
|
||||
* Planner::_populate_block
|
||||
*
|
||||
* Fills a new linear movement in the block (in terms of steps).
|
||||
*
|
||||
* target - target position in steps units
|
||||
* fr_mm_s - (target) speed of the move
|
||||
* extruder - target extruder
|
||||
* millimeters - the length of the movement, if known
|
||||
*
|
||||
* Returns true is movement is acceptable, false otherwise
|
||||
*/
|
||||
static bool _populate_block(block_t * const block, bool split_move,
|
||||
const int32_t (&target)[XYZE]
|
||||
#if HAS_POSITION_FLOAT
|
||||
, const float (&target_float)[XYZE]
|
||||
#endif
|
||||
@ -472,7 +519,7 @@ class Planner {
|
||||
* extruder - target extruder
|
||||
* millimeters - the length of the movement, if known
|
||||
*/
|
||||
static void buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0);
|
||||
static bool buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0);
|
||||
|
||||
static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
|
||||
|
||||
@ -489,11 +536,11 @@ class Planner {
|
||||
* extruder - target extruder
|
||||
* millimeters - the length of the movement, if known
|
||||
*/
|
||||
FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
|
||||
FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
|
||||
#if PLANNER_LEVELING && IS_CARTESIAN
|
||||
apply_leveling(rx, ry, rz);
|
||||
#endif
|
||||
buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters);
|
||||
return buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -506,7 +553,7 @@ class Planner {
|
||||
* extruder - target extruder
|
||||
* millimeters - the length of the movement, if known
|
||||
*/
|
||||
FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
|
||||
FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
|
||||
#if PLANNER_LEVELING
|
||||
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
||||
apply_leveling(raw);
|
||||
@ -515,9 +562,9 @@ class Planner {
|
||||
#endif
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(raw);
|
||||
buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
|
||||
return buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
|
||||
#else
|
||||
buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
|
||||
return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -541,11 +588,6 @@ class Planner {
|
||||
FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
|
||||
FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); }
|
||||
|
||||
/**
|
||||
* Sync from the stepper positions. (e.g., after an interrupted move)
|
||||
*/
|
||||
static void sync_from_steppers();
|
||||
|
||||
/**
|
||||
* Get an axis position according to stepper position(s)
|
||||
* For CORE machines apply translation from ABC to XYZ.
|
||||
@ -557,73 +599,116 @@ class Planner {
|
||||
FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
|
||||
#endif
|
||||
|
||||
// Called to force a quick stop of the machine (for example, when an emergency
|
||||
// stop is required, or when endstops are hit)
|
||||
static void quick_stop();
|
||||
|
||||
// Called when an endstop is triggered. Causes the machine to stop inmediately
|
||||
static void endstop_triggered(const AxisEnum axis);
|
||||
|
||||
// Triggered position of an axis in mm (not core-savvy)
|
||||
static float triggered_position_mm(const AxisEnum axis);
|
||||
|
||||
// Block until all buffered steps are executed / cleaned
|
||||
static void synchronize();
|
||||
|
||||
// Wait for moves to finish and disable all steppers
|
||||
static void finish_and_disable();
|
||||
|
||||
// Periodic tick to handle cleaning timeouts
|
||||
// Called from the Temperature ISR at ~1kHz
|
||||
static void tick() {
|
||||
if (cleaning_buffer_counter) {
|
||||
--cleaning_buffer_counter;
|
||||
#if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
|
||||
if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Does the buffer have any blocks queued?
|
||||
*/
|
||||
FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
|
||||
|
||||
//
|
||||
// Block until all buffered steps are executed
|
||||
//
|
||||
static void synchronize();
|
||||
|
||||
/**
|
||||
* "Discard" the block and "release" the memory.
|
||||
* Called when the current block is no longer needed.
|
||||
*/
|
||||
FORCE_INLINE static void discard_current_block() {
|
||||
if (has_blocks_queued())
|
||||
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* "Discard" the next block if it's continued.
|
||||
* Called after an interrupted move to throw away the rest of the move.
|
||||
*/
|
||||
FORCE_INLINE static bool discard_continued_block() {
|
||||
const bool discard = has_blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED);
|
||||
if (discard) discard_current_block();
|
||||
return discard;
|
||||
}
|
||||
|
||||
/**
|
||||
* The current block. NULL if the buffer is empty.
|
||||
* This also marks the block as busy.
|
||||
* WARNING: Called from Stepper ISR context!
|
||||
*/
|
||||
static block_t* get_current_block() {
|
||||
if (has_blocks_queued()) {
|
||||
|
||||
// Get the number of moves in the planner queue so far
|
||||
uint8_t nr_moves = movesplanned();
|
||||
|
||||
// If there are any moves queued ...
|
||||
if (nr_moves) {
|
||||
|
||||
// If there is still delay of delivery of blocks running, decrement it
|
||||
if (delay_before_delivering) {
|
||||
--delay_before_delivering;
|
||||
// If the number of movements queued is less than 3, and there is still time
|
||||
// to wait, do not deliver anything
|
||||
if (nr_moves < 3 && delay_before_delivering) return NULL;
|
||||
delay_before_delivering = 0;
|
||||
}
|
||||
|
||||
// If we are here, there is no excuse to deliver the block
|
||||
block_t * const block = &block_buffer[block_buffer_tail];
|
||||
|
||||
// If the block has no trapezoid calculated, it's unsafe to execute.
|
||||
if (movesplanned() > 1) {
|
||||
const block_t * const next = &block_buffer[next_block_index(block_buffer_tail)];
|
||||
if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE))
|
||||
return NULL;
|
||||
}
|
||||
else if (TEST(block->flag, BLOCK_BIT_RECALCULATE))
|
||||
return NULL;
|
||||
// No trapezoid calculated? Don't execute yet.
|
||||
if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return NULL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
|
||||
#endif
|
||||
|
||||
// Mark the block as busy, so the planner does not attempt to replan it
|
||||
SBI(block->flag, BLOCK_BIT_BUSY);
|
||||
return block;
|
||||
}
|
||||
else {
|
||||
|
||||
// The queue became empty
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
|
||||
#endif
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* "Discard" the block and "release" the memory.
|
||||
* Called when the current block is no longer needed.
|
||||
* NB: There MUST be a current block to call this function!!
|
||||
*/
|
||||
FORCE_INLINE static void discard_current_block() {
|
||||
if (has_blocks_queued()) { // Discard non-empty buffer.
|
||||
uint8_t block_index = next_block_index( block_buffer_tail );
|
||||
|
||||
// Push block_buffer_planned pointer, if encountered.
|
||||
if (!has_blocks_queued()) block_buffer_planned = block_index;
|
||||
|
||||
block_buffer_tail = block_index;
|
||||
}
|
||||
}
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
|
||||
static uint16_t block_buffer_runtime() {
|
||||
CRITICAL_SECTION_START
|
||||
#ifdef __AVR__
|
||||
// Protect the access to the variable. Only required for AVR, as
|
||||
// any 32bit CPU offers atomic access to 32bit variables
|
||||
bool was_enabled = STEPPER_ISR_ENABLED();
|
||||
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#endif
|
||||
|
||||
millis_t bbru = block_buffer_runtime_us;
|
||||
CRITICAL_SECTION_END
|
||||
|
||||
#ifdef __AVR__
|
||||
// Reenable Stepper ISR
|
||||
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#endif
|
||||
|
||||
// To translate µs to ms a division by 1000 would be required.
|
||||
// We introduce 2.4% error here by dividing by 1024.
|
||||
// Doesn't matter because block_buffer_runtime_us is already too small an estimation.
|
||||
@ -634,9 +719,19 @@ class Planner {
|
||||
}
|
||||
|
||||
static void clear_block_buffer_runtime() {
|
||||
CRITICAL_SECTION_START
|
||||
#ifdef __AVR__
|
||||
// Protect the access to the variable. Only required for AVR, as
|
||||
// any 32bit CPU offers atomic access to 32bit variables
|
||||
bool was_enabled = STEPPER_ISR_ENABLED();
|
||||
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#endif
|
||||
|
||||
block_buffer_runtime_us = 0;
|
||||
CRITICAL_SECTION_END
|
||||
|
||||
#ifdef __AVR__
|
||||
// Reenable Stepper ISR
|
||||
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -653,8 +748,8 @@ class Planner {
|
||||
/**
|
||||
* Get the index of the next / previous block in the ring buffer
|
||||
*/
|
||||
static constexpr int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); }
|
||||
static constexpr int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); }
|
||||
static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
|
||||
static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
|
||||
|
||||
/**
|
||||
* Calculate the distance (not time) it takes to accelerate
|
||||
@ -679,12 +774,12 @@ class Planner {
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the maximum allowable speed at this point, in order
|
||||
* to reach 'target_velocity' using 'acceleration' within a given
|
||||
* Calculate the maximum allowable speed squared at this point, in order
|
||||
* to reach 'target_velocity_sqr' using 'acceleration' within a given
|
||||
* 'distance'.
|
||||
*/
|
||||
static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
|
||||
return SQRT(sq(target_velocity) - 2 * accel * distance);
|
||||
static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
|
||||
return target_velocity_sqr - 2 * accel * distance;
|
||||
}
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
@ -699,7 +794,7 @@ class Planner {
|
||||
static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
|
||||
|
||||
static void reverse_pass_kernel(block_t* const current, const block_t * const next);
|
||||
static void forward_pass_kernel(const block_t * const previous, block_t* const current);
|
||||
static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
|
||||
|
||||
static void reverse_pass();
|
||||
static void forward_pass();
|
||||
|
@ -194,9 +194,11 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
|
||||
#if HAS_UBL_AND_CURVES
|
||||
float pos[XYZ] = { bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS] };
|
||||
planner.apply_leveling(pos);
|
||||
planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], bez_target[E_AXIS], fr_mm_s, active_extruder);
|
||||
if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], bez_target[E_AXIS], fr_mm_s, active_extruder))
|
||||
break;
|
||||
#else
|
||||
planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder);
|
||||
if (!planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder))
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
@ -86,10 +86,6 @@ Stepper stepper; // Singleton
|
||||
|
||||
block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
bool Stepper::abort_on_endstop_hit = false;
|
||||
#endif
|
||||
|
||||
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
||||
bool Stepper::performing_homing = false;
|
||||
#endif
|
||||
@ -100,8 +96,10 @@ block_t* Stepper::current_block = NULL; // A pointer to the block currently bei
|
||||
|
||||
// private:
|
||||
|
||||
uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
|
||||
int16_t Stepper::cleaning_buffer_counter = 0;
|
||||
uint8_t Stepper::last_direction_bits = 0, // The next stepping-bits to be output
|
||||
Stepper::last_movement_extruder = 0xFF; // Last movement extruder, as computed when the last movement was fetched from planner
|
||||
bool Stepper::abort_current_block, // Signals to the stepper that current block should be aborted
|
||||
Stepper::last_movement_non_null[NUM_AXIS]; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
|
||||
|
||||
#if ENABLED(X_DUAL_ENDSTOPS)
|
||||
bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
|
||||
@ -118,7 +116,7 @@ int32_t Stepper::counter_X = 0,
|
||||
Stepper::counter_Z = 0,
|
||||
Stepper::counter_E = 0;
|
||||
|
||||
volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
|
||||
uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
|
||||
@ -132,14 +130,15 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
|
||||
bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
|
||||
#endif
|
||||
|
||||
uint32_t Stepper::nextMainISR = 0;
|
||||
bool Stepper::all_steps_done = false;
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
|
||||
uint32_t Stepper::LA_decelerate_after;
|
||||
|
||||
constexpr hal_timer_t ADV_NEVER = HAL_TIMER_TYPE_MAX;
|
||||
|
||||
hal_timer_t Stepper::nextMainISR = 0,
|
||||
Stepper::nextAdvanceISR = ADV_NEVER,
|
||||
constexpr uint32_t ADV_NEVER = 0xFFFFFFFF;
|
||||
uint32_t Stepper::nextAdvanceISR = ADV_NEVER,
|
||||
Stepper::eISR_Rate = ADV_NEVER;
|
||||
uint16_t Stepper::current_adv_steps = 0,
|
||||
Stepper::final_adv_steps,
|
||||
@ -157,7 +156,7 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
|
||||
|
||||
#endif // LIN_ADVANCE
|
||||
|
||||
int32_t Stepper::acceleration_time, Stepper::deceleration_time;
|
||||
uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
|
||||
|
||||
volatile int32_t Stepper::count_position[NUM_AXIS] = { 0 };
|
||||
volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
|
||||
@ -166,11 +165,11 @@ volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
|
||||
int32_t Stepper::counter_m[MIXING_STEPPERS];
|
||||
#endif
|
||||
|
||||
uint32_t Stepper::ticks_nominal;
|
||||
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
|
||||
|
||||
hal_timer_t Stepper::OCR1A_nominal;
|
||||
#if DISABLED(BEZIER_JERK_CONTROL)
|
||||
hal_timer_t Stepper::acc_step_rate; // needed for deceleration start point
|
||||
uint32_t Stepper::acc_step_rate; // needed for deceleration start point
|
||||
#endif
|
||||
|
||||
volatile int32_t Stepper::endstops_trigsteps[XYZ];
|
||||
@ -185,12 +184,12 @@ volatile int32_t Stepper::endstops_trigsteps[XYZ];
|
||||
#define DUAL_ENDSTOP_APPLY_STEP(A,V) \
|
||||
if (performing_homing) { \
|
||||
if (A##_HOME_DIR < 0) { \
|
||||
if (!(TEST(endstops.old_endstop_bits, A##_MIN) && count_direction[_AXIS(A)] < 0) && !LOCKED_##A##_MOTOR) A##_STEP_WRITE(V); \
|
||||
if (!(TEST(endstops.old_endstop_bits, A##2_MIN) && count_direction[_AXIS(A)] < 0) && !LOCKED_##A##2_MOTOR) A##2_STEP_WRITE(V); \
|
||||
if (!(TEST(endstops.current_endstop_bits, A##_MIN) && count_direction[_AXIS(A)] < 0) && !LOCKED_##A##_MOTOR) A##_STEP_WRITE(V); \
|
||||
if (!(TEST(endstops.current_endstop_bits, A##2_MIN) && count_direction[_AXIS(A)] < 0) && !LOCKED_##A##2_MOTOR) A##2_STEP_WRITE(V); \
|
||||
} \
|
||||
else { \
|
||||
if (!(TEST(endstops.old_endstop_bits, A##_MAX) && count_direction[_AXIS(A)] > 0) && !LOCKED_##A##_MOTOR) A##_STEP_WRITE(V); \
|
||||
if (!(TEST(endstops.old_endstop_bits, A##2_MAX) && count_direction[_AXIS(A)] > 0) && !LOCKED_##A##2_MOTOR) A##2_STEP_WRITE(V); \
|
||||
if (!(TEST(endstops.current_endstop_bits, A##_MAX) && count_direction[_AXIS(A)] > 0) && !LOCKED_##A##_MOTOR) A##_STEP_WRITE(V); \
|
||||
if (!(TEST(endstops.current_endstop_bits, A##2_MAX) && count_direction[_AXIS(A)] > 0) && !LOCKED_##A##2_MOTOR) A##2_STEP_WRITE(V); \
|
||||
} \
|
||||
} \
|
||||
else { \
|
||||
@ -319,10 +318,6 @@ void Stepper::set_directions() {
|
||||
#endif // !LIN_ADVANCE
|
||||
}
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
extern volatile uint8_t e_hit;
|
||||
#endif
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
/**
|
||||
* We are using a quintic (fifth-degree) Bézier polynomial for the velocity curve.
|
||||
@ -379,7 +374,7 @@ void Stepper::set_directions() {
|
||||
*
|
||||
* Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
|
||||
* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
|
||||
* per second (driver pulses should at least be 2uS hi/2uS lo), and allocating 2 bits to avoid
|
||||
* per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
|
||||
* overflows on the evaluation of the Bézier curve, means we can use
|
||||
*
|
||||
* t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
|
||||
@ -1149,11 +1144,27 @@ void Stepper::set_directions() {
|
||||
HAL_STEP_TIMER_ISR {
|
||||
HAL_timer_isr_prologue(STEP_TIMER_NUM);
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
Stepper::advance_isr_scheduler();
|
||||
#else
|
||||
Stepper::isr();
|
||||
#endif
|
||||
// Program timer compare for the maximum period, so it does NOT
|
||||
// flag an interrupt while this ISR is running - So changes from small
|
||||
// periods to big periods are respected and the timer does not reset to 0
|
||||
HAL_timer_set_compare(STEP_TIMER_NUM, HAL_TIMER_TYPE_MAX);
|
||||
|
||||
// Call the ISR scheduler
|
||||
hal_timer_t ticks = Stepper::isr_scheduler();
|
||||
|
||||
// Now 'ticks' contains the period to the next Stepper ISR.
|
||||
// Potential problem: Since the timer continues to run, the requested
|
||||
// compare value may already have passed.
|
||||
//
|
||||
// Assuming at least 6µs between calls to this ISR...
|
||||
// On AVR the ISR epilogue is estimated at 40 instructions - close to 2.5µS.
|
||||
// On ARM the ISR epilogue is estimated at 10 instructions - close to 200nS.
|
||||
// In either case leave at least 4µS for other tasks to execute.
|
||||
const hal_timer_t minticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t((HAL_TICKS_PER_US) * 4); // ISR never takes more than 1ms, so this shouldn't cause trouble
|
||||
NOLESS(ticks, MAX(minticks, hal_timer_t((STEP_TIMER_MIN_INTERVAL) * (HAL_TICKS_PER_US))));
|
||||
|
||||
// Set the next ISR to fire at the proper time
|
||||
HAL_timer_set_compare(STEP_TIMER_NUM, ticks);
|
||||
|
||||
HAL_timer_isr_epilogue(STEP_TIMER_NUM);
|
||||
}
|
||||
@ -1164,168 +1175,73 @@ HAL_STEP_TIMER_ISR {
|
||||
#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
|
||||
#endif
|
||||
|
||||
void Stepper::isr() {
|
||||
hal_timer_t Stepper::isr_scheduler() {
|
||||
uint32_t interval;
|
||||
|
||||
#define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
|
||||
#define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
|
||||
|
||||
hal_timer_t ocr_val;
|
||||
static uint32_t step_remaining = 0; // SPLIT function always runs. This allows 16 bit timers to be
|
||||
// used to generate the stepper ISR.
|
||||
#define SPLIT(L) do { \
|
||||
if (L > ENDSTOP_NOMINAL_OCR_VAL) { \
|
||||
const uint32_t remainder = (uint32_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
|
||||
ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
|
||||
step_remaining = (uint32_t)L - ocr_val; \
|
||||
} \
|
||||
else \
|
||||
ocr_val = L;\
|
||||
}while(0)
|
||||
|
||||
// Time remaining before the next step?
|
||||
if (step_remaining) {
|
||||
|
||||
// Make sure endstops are updated
|
||||
if (ENDSTOPS_ENABLED) endstops.update();
|
||||
|
||||
// Next ISR either for endstops or stepping
|
||||
ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL;
|
||||
step_remaining -= ocr_val;
|
||||
_NEXT_ISR(ocr_val);
|
||||
|
||||
#if DISABLED(LIN_ADVANCE)
|
||||
HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
|
||||
#endif
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
//
|
||||
// When cleaning, discard the current block and run fast
|
||||
//
|
||||
if (cleaning_buffer_counter) {
|
||||
if (cleaning_buffer_counter < 0) { // Count up for endstop hit
|
||||
if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger
|
||||
if (!planner.discard_continued_block()) // Discard next CONTINUED block
|
||||
cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED
|
||||
}
|
||||
else {
|
||||
planner.discard_current_block();
|
||||
--cleaning_buffer_counter; // Count down for abort print
|
||||
#if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
|
||||
if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
|
||||
#endif
|
||||
}
|
||||
current_block = NULL; // Prep to get a new block after cleaning
|
||||
_NEXT_ISR(HAL_STEPPER_TIMER_RATE / 10000); // Run at max speed - 10 KHz
|
||||
return;
|
||||
}
|
||||
|
||||
// If there is no current block, attempt to pop one from the buffer
|
||||
if (!current_block) {
|
||||
|
||||
// Anything in the buffer?
|
||||
if ((current_block = planner.get_current_block())) {
|
||||
|
||||
// Sync block? Sync the stepper counts and return
|
||||
while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {
|
||||
_set_position(
|
||||
current_block->steps[A_AXIS], current_block->steps[B_AXIS],
|
||||
current_block->steps[C_AXIS], current_block->steps[E_AXIS]
|
||||
);
|
||||
planner.discard_current_block();
|
||||
if (!(current_block = planner.get_current_block())) return;
|
||||
}
|
||||
|
||||
// Initialize the trapezoid generator from the current block.
|
||||
static int8_t last_extruder = -1;
|
||||
// Run main stepping pulse phase ISR if we have to
|
||||
if (!nextMainISR) Stepper::stepper_pulse_phase_isr();
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
#if E_STEPPERS > 1
|
||||
if (current_block->active_extruder != last_extruder) {
|
||||
current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
|
||||
LA_active_extruder = current_block->active_extruder;
|
||||
}
|
||||
// Run linear advance stepper ISR if we have to
|
||||
if (!nextAdvanceISR) nextAdvanceISR = Stepper::advance_isr();
|
||||
#endif
|
||||
|
||||
if ((use_advance_lead = current_block->use_advance_lead)) {
|
||||
LA_decelerate_after = current_block->decelerate_after;
|
||||
final_adv_steps = current_block->final_adv_steps;
|
||||
max_adv_steps = current_block->max_adv_steps;
|
||||
}
|
||||
// ^== Time critical. NOTHING besides pulse generation should be above here!!!
|
||||
|
||||
// Run main stepping block processing ISR if we have to
|
||||
if (!nextMainISR) nextMainISR = Stepper::stepper_block_phase_isr();
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
// Select the closest interval in time
|
||||
interval = (nextAdvanceISR <= nextMainISR)
|
||||
? nextAdvanceISR
|
||||
: nextMainISR;
|
||||
|
||||
#else // !ENABLED(LIN_ADVANCE)
|
||||
|
||||
// The interval is just the remaining time to the stepper ISR
|
||||
interval = nextMainISR;
|
||||
#endif
|
||||
|
||||
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
|
||||
last_direction_bits = current_block->direction_bits;
|
||||
last_extruder = current_block->active_extruder;
|
||||
set_directions();
|
||||
// Limit the value to the maximum possible value of the timer
|
||||
if (interval > HAL_TIMER_TYPE_MAX)
|
||||
interval = HAL_TIMER_TYPE_MAX;
|
||||
|
||||
// Compute the time remaining for the main isr
|
||||
nextMainISR -= interval;
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
// Compute the time remaining for the advance isr
|
||||
if (nextAdvanceISR != ADV_NEVER)
|
||||
nextAdvanceISR -= interval;
|
||||
#endif
|
||||
|
||||
return (hal_timer_t)interval;
|
||||
}
|
||||
|
||||
// No acceleration / deceleration time elapsed so far
|
||||
acceleration_time = deceleration_time = 0;
|
||||
// This part of the ISR should ONLY create the pulses for the steppers
|
||||
// -- Nothing more, nothing less -- We want to avoid jitter from where
|
||||
// the pulses should be generated (when the interrupt triggers) to the
|
||||
// time pulses are actually created. So, PLEASE DO NOT PLACE ANY CODE
|
||||
// above this line that can conditionally change that time (we are trying
|
||||
// to keep the delay between the interrupt triggering and pulse generation
|
||||
// as constant as possible!!!!
|
||||
void Stepper::stepper_pulse_phase_isr() {
|
||||
|
||||
// No step events completed so far
|
||||
step_events_completed = 0;
|
||||
|
||||
// step_rate to timer interval
|
||||
OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
|
||||
|
||||
// make a note of the number of step loops required at nominal speed
|
||||
step_loops_nominal = step_loops;
|
||||
|
||||
#if DISABLED(BEZIER_JERK_CONTROL)
|
||||
// Set as deceleration point the initial rate of the block
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
#endif
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
// Initialize the Bézier speed curve
|
||||
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
|
||||
|
||||
// We have not started the 2nd half of the trapezoid
|
||||
bezier_2nd_half = false;
|
||||
#endif
|
||||
|
||||
// Initialize Bresenham counters to 1/2 the ceiling
|
||||
counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
MIXING_STEPPERS_LOOP(i)
|
||||
counter_m[i] = -(current_block->mix_event_count[i] >> 1);
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
|
||||
// No 'change' can be detected.
|
||||
#endif
|
||||
|
||||
#if ENABLED(Z_LATE_ENABLE)
|
||||
// If delayed Z enable, postpone move for 1mS
|
||||
if (current_block->steps[Z_AXIS] > 0) {
|
||||
enable_Z();
|
||||
_NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
// If no more queued moves, postpone next check for 1mS
|
||||
_NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
|
||||
return;
|
||||
// If we must abort the current block, do so!
|
||||
if (abort_current_block) {
|
||||
abort_current_block = false;
|
||||
if (current_block) {
|
||||
current_block = NULL;
|
||||
planner.discard_current_block();
|
||||
}
|
||||
}
|
||||
|
||||
// Update endstops state, if enabled
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
if (e_hit && ENDSTOPS_ENABLED) {
|
||||
endstops.update();
|
||||
e_hit--;
|
||||
}
|
||||
#else
|
||||
if (ENDSTOPS_ENABLED) endstops.update();
|
||||
#endif
|
||||
// If there is no current block, do nothing
|
||||
if (!current_block) return;
|
||||
|
||||
// Take multiple steps per interrupt (For high speed moves)
|
||||
bool all_steps_done = false;
|
||||
all_steps_done = false;
|
||||
for (uint8_t i = step_loops; i--;) {
|
||||
|
||||
#define _COUNTER(AXIS) counter_## AXIS
|
||||
@ -1520,13 +1436,26 @@ void Stepper::isr() {
|
||||
#endif
|
||||
|
||||
} // steps_loop
|
||||
}
|
||||
|
||||
// This is the last half of the stepper interrupt: This one processes and
|
||||
// properly schedules blocks from the planner. This is executed after creating
|
||||
// the step pulses, so it is not time critical, as pulses are already done.
|
||||
|
||||
uint32_t Stepper::stepper_block_phase_isr() {
|
||||
|
||||
// If no queued movements, just wait 1ms for the next move
|
||||
uint32_t interval = (HAL_STEPPER_TIMER_RATE / 1000);
|
||||
|
||||
// If there is a current block
|
||||
if (current_block) {
|
||||
|
||||
// Calculate new timer value
|
||||
if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
|
||||
if (step_events_completed <= current_block->accelerate_until) {
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
// Get the next speed to use (Jerk limited!)
|
||||
hal_timer_t acc_step_rate =
|
||||
uint32_t acc_step_rate =
|
||||
acceleration_time < current_block->acceleration_time
|
||||
? _eval_bezier_curve(acceleration_time)
|
||||
: current_block->cruise_rate;
|
||||
@ -1536,11 +1465,7 @@ void Stepper::isr() {
|
||||
#endif
|
||||
|
||||
// step_rate to timer interval
|
||||
const hal_timer_t interval = calc_timer_interval(acc_step_rate);
|
||||
|
||||
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
||||
_NEXT_ISR(ocr_val);
|
||||
|
||||
interval = calc_timer_interval(acc_step_rate);
|
||||
acceleration_time += interval;
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
@ -1556,13 +1481,12 @@ void Stepper::isr() {
|
||||
}
|
||||
#endif // LIN_ADVANCE
|
||||
}
|
||||
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
|
||||
hal_timer_t step_rate;
|
||||
else if (step_events_completed > current_block->decelerate_after) {
|
||||
uint32_t step_rate;
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
// If this is the 1st time we process the 2nd half of the trapezoid...
|
||||
if (!bezier_2nd_half) {
|
||||
|
||||
// Initialize the Bézier speed curve
|
||||
_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
|
||||
bezier_2nd_half = true;
|
||||
@ -1582,20 +1506,15 @@ void Stepper::isr() {
|
||||
}
|
||||
else
|
||||
step_rate = current_block->final_rate;
|
||||
|
||||
#endif
|
||||
|
||||
// step_rate to timer interval
|
||||
const hal_timer_t interval = calc_timer_interval(step_rate);
|
||||
|
||||
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
||||
_NEXT_ISR(ocr_val);
|
||||
|
||||
interval = calc_timer_interval(step_rate);
|
||||
deceleration_time += interval;
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
if (current_block->use_advance_lead) {
|
||||
if (step_events_completed <= (uint32_t)current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) {
|
||||
if (step_events_completed <= current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) {
|
||||
nextAdvanceISR = 0; // Wake up eISR on first deceleration loop
|
||||
eISR_Rate = current_block->advance_speed;
|
||||
}
|
||||
@ -1609,22 +1528,17 @@ void Stepper::isr() {
|
||||
else {
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
// If we have esteps to execute, fire the next advance_isr "now"
|
||||
// If there are any esteps, fire the next advance_isr "now"
|
||||
if (e_steps && eISR_Rate != current_block->advance_speed) nextAdvanceISR = 0;
|
||||
#endif
|
||||
|
||||
SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
||||
_NEXT_ISR(ocr_val);
|
||||
// The timer interval is just the nominal value for the nominal speed
|
||||
interval = ticks_nominal;
|
||||
|
||||
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
||||
// Ensure this runs at the correct step rate, even if it just came off an acceleration
|
||||
step_loops = step_loops_nominal;
|
||||
}
|
||||
|
||||
#if DISABLED(LIN_ADVANCE)
|
||||
// Make sure stepper ISR doesn't monopolize the CPU
|
||||
HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
|
||||
#endif
|
||||
|
||||
// If current block is finished, reset pointer
|
||||
if (all_steps_done) {
|
||||
current_block = NULL;
|
||||
@ -1632,14 +1546,113 @@ void Stepper::isr() {
|
||||
}
|
||||
}
|
||||
|
||||
// If there is no current block at this point, attempt to pop one from the buffer
|
||||
// and prepare its movement
|
||||
if (!current_block) {
|
||||
|
||||
// Anything in the buffer?
|
||||
if ((current_block = planner.get_current_block())) {
|
||||
|
||||
// Sync block? Sync the stepper counts and return
|
||||
while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {
|
||||
_set_position(
|
||||
current_block->position[A_AXIS], current_block->position[B_AXIS],
|
||||
current_block->position[C_AXIS], current_block->position[E_AXIS]
|
||||
);
|
||||
planner.discard_current_block();
|
||||
|
||||
// Try to get a new block
|
||||
if (!(current_block = planner.get_current_block()))
|
||||
return interval; // No more queued movements!
|
||||
}
|
||||
|
||||
// Compute movement direction for proper endstop handling
|
||||
LOOP_NA(i) last_movement_non_null[i] = !!current_block->steps[i];
|
||||
|
||||
// Initialize the trapezoid generator from the current block.
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
#if E_STEPPERS > 1
|
||||
if (current_block->active_extruder != last_movement_extruder) {
|
||||
current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
|
||||
LA_active_extruder = current_block->active_extruder;
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((use_advance_lead = current_block->use_advance_lead)) {
|
||||
LA_decelerate_after = current_block->decelerate_after;
|
||||
final_adv_steps = current_block->final_adv_steps;
|
||||
max_adv_steps = current_block->max_adv_steps;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_movement_extruder) {
|
||||
last_direction_bits = current_block->direction_bits;
|
||||
last_movement_extruder = current_block->active_extruder;
|
||||
set_directions();
|
||||
}
|
||||
|
||||
// At this point, we must ensure the movement about to execute isn't
|
||||
// trying to force the head against a limit switch. If using interrupt-
|
||||
// driven change detection, and already against a limit then no call to
|
||||
// the endstop_triggered method will be done and the movement will be
|
||||
// done against the endstop. So, check the limits here: If the movement
|
||||
// is against the limits, the block will be marked as to be killed, and
|
||||
// on the next call to this ISR, will be discarded.
|
||||
endstops.check_possible_change();
|
||||
|
||||
// No acceleration / deceleration time elapsed so far
|
||||
acceleration_time = deceleration_time = 0;
|
||||
|
||||
// No step events completed so far
|
||||
step_events_completed = 0;
|
||||
|
||||
// step_rate to timer interval for the nominal speed
|
||||
ticks_nominal = calc_timer_interval(current_block->nominal_rate);
|
||||
|
||||
// make a note of the number of step loops required at nominal speed
|
||||
step_loops_nominal = step_loops;
|
||||
|
||||
#if DISABLED(BEZIER_JERK_CONTROL)
|
||||
// Set as deceleration point the initial rate of the block
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
#endif
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
// Initialize the Bézier speed curve
|
||||
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
|
||||
|
||||
// We have not started the 2nd half of the trapezoid
|
||||
bezier_2nd_half = false;
|
||||
#endif
|
||||
|
||||
// Initialize Bresenham counters to 1/2 the ceiling
|
||||
counter_X = counter_Y = counter_Z = counter_E = -((int32_t)(current_block->step_event_count >> 1));
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
MIXING_STEPPERS_LOOP(i)
|
||||
counter_m[i] = -(current_block->mix_event_count[i] >> 1);
|
||||
#endif
|
||||
|
||||
#if ENABLED(Z_LATE_ENABLE)
|
||||
// If delayed Z enable, enable it now. This option will severely interfere with
|
||||
// timing between pulses when chaining motion between blocks, and it could lead
|
||||
// to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
|
||||
if (current_block->steps[Z_AXIS]) enable_Z();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Return the interval to wait
|
||||
return interval;
|
||||
}
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
|
||||
#define CYCLES_EATEN_E (E_STEPPERS * 5)
|
||||
#define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
|
||||
|
||||
// Timer interrupt for E. e_steps is set in the main routine;
|
||||
|
||||
void Stepper::advance_isr() {
|
||||
uint32_t Stepper::advance_isr() {
|
||||
uint32_t interval;
|
||||
|
||||
#if ENABLED(MK2_MULTIPLEXER) // For SNMM even-numbered steppers are reversed
|
||||
#define SET_E_STEP_DIR(INDEX) do{ if (e_steps) E0_DIR_WRITE(e_steps < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0)); }while(0)
|
||||
@ -1700,21 +1713,21 @@ void Stepper::isr() {
|
||||
if (step_events_completed > LA_decelerate_after && current_adv_steps > final_adv_steps) {
|
||||
e_steps--;
|
||||
current_adv_steps--;
|
||||
nextAdvanceISR = eISR_Rate;
|
||||
interval = eISR_Rate;
|
||||
}
|
||||
else if (step_events_completed < LA_decelerate_after && current_adv_steps < max_adv_steps) {
|
||||
//step_events_completed <= (uint32_t)current_block->accelerate_until) {
|
||||
e_steps++;
|
||||
current_adv_steps++;
|
||||
nextAdvanceISR = eISR_Rate;
|
||||
interval = eISR_Rate;
|
||||
}
|
||||
else {
|
||||
nextAdvanceISR = ADV_NEVER;
|
||||
interval = ADV_NEVER;
|
||||
eISR_Rate = ADV_NEVER;
|
||||
}
|
||||
}
|
||||
else
|
||||
nextAdvanceISR = ADV_NEVER;
|
||||
interval = ADV_NEVER;
|
||||
|
||||
switch (LA_active_extruder) {
|
||||
case 0: SET_E_STEP_DIR(0); break;
|
||||
@ -1787,39 +1800,9 @@ void Stepper::isr() {
|
||||
#endif
|
||||
|
||||
} // e_steps
|
||||
|
||||
return interval;
|
||||
}
|
||||
|
||||
void Stepper::advance_isr_scheduler() {
|
||||
|
||||
// Run main stepping ISR if flagged
|
||||
if (!nextMainISR) isr();
|
||||
|
||||
// Run Advance stepping ISR if flagged
|
||||
if (!nextAdvanceISR) advance_isr();
|
||||
|
||||
// Is the next advance ISR scheduled before the next main ISR?
|
||||
if (nextAdvanceISR <= nextMainISR) {
|
||||
// Set up the next interrupt
|
||||
HAL_timer_set_compare(STEP_TIMER_NUM, nextAdvanceISR);
|
||||
// New interval for the next main ISR
|
||||
if (nextMainISR) nextMainISR -= nextAdvanceISR;
|
||||
// Will call Stepper::advance_isr on the next interrupt
|
||||
nextAdvanceISR = 0;
|
||||
}
|
||||
else {
|
||||
// The next main ISR comes first
|
||||
HAL_timer_set_compare(STEP_TIMER_NUM, nextMainISR);
|
||||
// New interval for the next advance ISR, if any
|
||||
if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
|
||||
nextAdvanceISR -= nextMainISR;
|
||||
// Will call Stepper::isr on the next interrupt
|
||||
nextMainISR = 0;
|
||||
}
|
||||
|
||||
// Make sure stepper ISR doesn't monopolize the CPU
|
||||
HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US);
|
||||
}
|
||||
|
||||
#endif // LIN_ADVANCE
|
||||
|
||||
void Stepper::init() {
|
||||
@ -1924,9 +1907,6 @@ void Stepper::init() {
|
||||
if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
|
||||
// Init endstops and pullups
|
||||
endstops.init();
|
||||
|
||||
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
|
||||
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
|
||||
#define _DISABLE(AXIS) disable_## AXIS()
|
||||
@ -2048,31 +2028,33 @@ void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c
|
||||
* Get a stepper's position in steps.
|
||||
*/
|
||||
int32_t Stepper::position(const AxisEnum axis) {
|
||||
CRITICAL_SECTION_START;
|
||||
const int32_t count_pos = count_position[axis];
|
||||
CRITICAL_SECTION_END;
|
||||
return count_pos;
|
||||
}
|
||||
|
||||
void Stepper::finish_and_disable() {
|
||||
planner.synchronize();
|
||||
disable_all_steppers();
|
||||
}
|
||||
|
||||
void Stepper::quick_stop() {
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
kill_current_block();
|
||||
current_block = NULL;
|
||||
cleaning_buffer_counter = 5000;
|
||||
planner.clear_block_buffer();
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
planner.clear_block_buffer_runtime();
|
||||
#ifdef __AVR__
|
||||
// Protect the access to the position. Only required for AVR, as
|
||||
// any 32bit CPU offers atomic access to 32bit variables
|
||||
const bool was_enabled = STEPPER_ISR_ENABLED();
|
||||
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#endif
|
||||
|
||||
int32_t v = count_position[axis];
|
||||
|
||||
#ifdef __AVR__
|
||||
// Reenable Stepper ISR
|
||||
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#endif
|
||||
return v;
|
||||
}
|
||||
|
||||
// Signal endstops were triggered - This function can be called from
|
||||
// an ISR context (Temperature, Stepper or limits ISR), so we must
|
||||
// be very careful here. If the interrupt being preempted was the
|
||||
// Stepper ISR (this CAN happen with the endstop limits ISR) then
|
||||
// when the stepper ISR resumes, we must be very sure that the movement
|
||||
// is properly cancelled
|
||||
void Stepper::endstop_triggered(const AxisEnum axis) {
|
||||
|
||||
const bool was_enabled = STEPPER_ISR_ENABLED();
|
||||
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
#if IS_CORE
|
||||
|
||||
endstops_trigsteps[axis] = 0.5f * (
|
||||
@ -2086,16 +2068,41 @@ void Stepper::endstop_triggered(const AxisEnum axis) {
|
||||
|
||||
#endif // !COREXY && !COREXZ && !COREYZ
|
||||
|
||||
kill_current_block();
|
||||
cleaning_buffer_counter = -1; // Discard the rest of the move
|
||||
// Discard the rest of the move if there is a current block
|
||||
quick_stop();
|
||||
|
||||
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
int32_t Stepper::triggered_position(const AxisEnum axis) {
|
||||
#ifdef __AVR__
|
||||
// Protect the access to the position. Only required for AVR, as
|
||||
// any 32bit CPU offers atomic access to 32bit variables
|
||||
const bool was_enabled = STEPPER_ISR_ENABLED();
|
||||
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#endif
|
||||
|
||||
const int32_t v = endstops_trigsteps[axis];
|
||||
|
||||
#ifdef __AVR__
|
||||
// Reenable Stepper ISR
|
||||
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
#endif
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
void Stepper::report_positions() {
|
||||
CRITICAL_SECTION_START;
|
||||
|
||||
// Protect the access to the position.
|
||||
const bool was_enabled = STEPPER_ISR_ENABLED();
|
||||
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
const int32_t xpos = count_position[X_AXIS],
|
||||
ypos = count_position[Y_AXIS],
|
||||
zpos = count_position[Z_AXIS];
|
||||
CRITICAL_SECTION_END;
|
||||
|
||||
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
#if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
|
||||
|
@ -62,10 +62,6 @@ class Stepper {
|
||||
|
||||
static block_t* current_block; // A pointer to the block currently being traced
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
static bool abort_on_endstop_hit;
|
||||
#endif
|
||||
|
||||
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
||||
static bool performing_homing;
|
||||
#endif
|
||||
@ -77,11 +73,12 @@ class Stepper {
|
||||
static uint32_t motor_current_setting[3];
|
||||
#endif
|
||||
|
||||
static int16_t cleaning_buffer_counter;
|
||||
|
||||
private:
|
||||
|
||||
static uint8_t last_direction_bits; // The next stepping-bits to be output
|
||||
static uint8_t last_direction_bits, // The next stepping-bits to be output
|
||||
last_movement_extruder; // Last movement extruder, as computed when the last movement was fetched from planner
|
||||
static bool abort_current_block, // Signals to the stepper that current block should be aborted
|
||||
last_movement_non_null[NUM_AXIS]; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
|
||||
|
||||
#if ENABLED(X_DUAL_ENDSTOPS)
|
||||
static bool locked_x_motor, locked_x2_motor;
|
||||
@ -95,7 +92,7 @@ class Stepper {
|
||||
|
||||
// Counter variables for the Bresenham line tracer
|
||||
static int32_t counter_X, counter_Y, counter_Z, counter_E;
|
||||
static volatile uint32_t step_events_completed; // The number of step events executed in the current block
|
||||
static uint32_t step_events_completed; // The number of step events executed in the current block
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
static int32_t bezier_A, // A coefficient in Bézier speed curve
|
||||
@ -109,12 +106,14 @@ class Stepper {
|
||||
static bool bezier_2nd_half; // If Bézier curve has been initialized or not
|
||||
#endif
|
||||
|
||||
static uint32_t nextMainISR; // time remaining for the next Step ISR
|
||||
static bool all_steps_done; // all steps done
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
|
||||
static uint32_t LA_decelerate_after; // Copy from current executed block. Needed because current_block is set to NULL "too early".
|
||||
static hal_timer_t nextMainISR, nextAdvanceISR, eISR_Rate;
|
||||
static uint32_t nextAdvanceISR, eISR_Rate;
|
||||
static uint16_t current_adv_steps, final_adv_steps, max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
|
||||
#define _NEXT_ISR(T) nextMainISR = T
|
||||
static int8_t e_steps;
|
||||
static bool use_advance_lead;
|
||||
#if E_STEPPERS > 1
|
||||
@ -123,18 +122,14 @@ class Stepper {
|
||||
static constexpr int8_t LA_active_extruder = 0;
|
||||
#endif
|
||||
|
||||
#else // !LIN_ADVANCE
|
||||
#endif // LIN_ADVANCE
|
||||
|
||||
#define _NEXT_ISR(T) HAL_timer_set_compare(STEP_TIMER_NUM, T);
|
||||
|
||||
#endif // !LIN_ADVANCE
|
||||
|
||||
static int32_t acceleration_time, deceleration_time;
|
||||
static uint32_t acceleration_time, deceleration_time;
|
||||
static uint8_t step_loops, step_loops_nominal;
|
||||
|
||||
static hal_timer_t OCR1A_nominal;
|
||||
static uint32_t ticks_nominal;
|
||||
#if DISABLED(BEZIER_JERK_CONTROL)
|
||||
static hal_timer_t acc_step_rate; // needed for deceleration start point
|
||||
static uint32_t acc_step_rate; // needed for deceleration start point
|
||||
#endif
|
||||
|
||||
static volatile int32_t endstops_trigsteps[XYZ];
|
||||
@ -167,88 +162,53 @@ class Stepper {
|
||||
//
|
||||
Stepper() { };
|
||||
|
||||
//
|
||||
// Initialize stepper hardware
|
||||
//
|
||||
static void init();
|
||||
|
||||
//
|
||||
// Interrupt Service Routines
|
||||
//
|
||||
|
||||
static void isr();
|
||||
// The ISR scheduler
|
||||
static hal_timer_t isr_scheduler();
|
||||
|
||||
// The stepper pulse phase ISR
|
||||
static void stepper_pulse_phase_isr();
|
||||
|
||||
// The stepper block processing phase ISR
|
||||
static uint32_t stepper_block_phase_isr();
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
static void advance_isr();
|
||||
static void advance_isr_scheduler();
|
||||
// The Linear advance stepper ISR
|
||||
static uint32_t advance_isr();
|
||||
#endif
|
||||
|
||||
//
|
||||
// Set the current position in steps
|
||||
//
|
||||
static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
|
||||
|
||||
FORCE_INLINE static void _set_position(const AxisEnum a, const int32_t &v) { count_position[a] = v; }
|
||||
|
||||
FORCE_INLINE static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
|
||||
planner.synchronize();
|
||||
CRITICAL_SECTION_START;
|
||||
_set_position(a, b, c, e);
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
static void set_position(const AxisEnum a, const int32_t &v) {
|
||||
planner.synchronize();
|
||||
CRITICAL_SECTION_START;
|
||||
count_position[a] = v;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
FORCE_INLINE static void _set_e_position(const int32_t &e) { count_position[E_AXIS] = e; }
|
||||
|
||||
static void set_e_position(const int32_t &e) {
|
||||
planner.synchronize();
|
||||
CRITICAL_SECTION_START;
|
||||
count_position[E_AXIS] = e;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
//
|
||||
// Set direction bits for all steppers
|
||||
//
|
||||
static void set_directions();
|
||||
|
||||
//
|
||||
// Get the position of a stepper, in steps
|
||||
//
|
||||
static int32_t position(const AxisEnum axis);
|
||||
|
||||
//
|
||||
// Report the positions of the steppers, in steps
|
||||
//
|
||||
static void report_positions();
|
||||
|
||||
//
|
||||
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
||||
// to notify the subsystem that it is time to go to work.
|
||||
//
|
||||
static void wake_up();
|
||||
|
||||
//
|
||||
// Wait for moves to finish and disable all steppers
|
||||
//
|
||||
static void finish_and_disable();
|
||||
// Quickly stop all steppers
|
||||
FORCE_INLINE static void quick_stop() { abort_current_block = true; }
|
||||
|
||||
//
|
||||
// Quickly stop all steppers and clear the blocks queue
|
||||
//
|
||||
static void quick_stop();
|
||||
|
||||
//
|
||||
// The direction of a single motor
|
||||
//
|
||||
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
|
||||
|
||||
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
|
||||
FORCE_INLINE static bool movement_non_null(const AxisEnum axis) { return last_movement_non_null[axis]; }
|
||||
|
||||
// The extruder associated to the last movement
|
||||
FORCE_INLINE static uint8_t movement_extruder() { return last_movement_extruder; }
|
||||
|
||||
// Handle a triggered endstop
|
||||
static void endstop_triggered(const AxisEnum axis);
|
||||
|
||||
// Triggered position of an axis in steps
|
||||
static int32_t triggered_position(const AxisEnum axis);
|
||||
|
||||
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
||||
static void digitalPotWrite(const int16_t address, const int16_t value);
|
||||
static void digipot_current(const uint8_t driver, const int16_t current);
|
||||
@ -280,34 +240,24 @@ class Stepper {
|
||||
static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
|
||||
#endif
|
||||
|
||||
static inline void kill_current_block() {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
|
||||
//
|
||||
// Handle a triggered endstop
|
||||
//
|
||||
static void endstop_triggered(const AxisEnum axis);
|
||||
|
||||
//
|
||||
// Triggered position of an axis in mm (not core-savvy)
|
||||
//
|
||||
FORCE_INLINE static float triggered_position_mm(const AxisEnum axis) {
|
||||
return endstops_trigsteps[axis] * planner.steps_to_mm[axis];
|
||||
}
|
||||
|
||||
#if HAS_MOTOR_CURRENT_PWM
|
||||
static void refresh_motor_power();
|
||||
#endif
|
||||
|
||||
private:
|
||||
|
||||
FORCE_INLINE static hal_timer_t calc_timer_interval(hal_timer_t step_rate) {
|
||||
hal_timer_t timer;
|
||||
// Set the current position in steps
|
||||
static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
|
||||
|
||||
NOMORE(step_rate, MAX_STEP_FREQUENCY);
|
||||
// Set direction bits for all steppers
|
||||
static void set_directions();
|
||||
|
||||
// TODO: HAL: tidy this up, use condtionals_post.h
|
||||
FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate) {
|
||||
uint32_t timer;
|
||||
|
||||
NOMORE(step_rate, uint32_t(MAX_STEP_FREQUENCY));
|
||||
|
||||
// TODO: HAL: tidy this up, use Conditionals_post.h
|
||||
#ifdef CPU_32_BIT
|
||||
#if ENABLED(DISABLE_MULTI_STEPPING)
|
||||
step_loops = 1;
|
||||
@ -344,20 +294,20 @@ class Stepper {
|
||||
timer = uint32_t(HAL_STEPPER_TIMER_RATE) / step_rate;
|
||||
NOLESS(timer, min_time_per_step); // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen)
|
||||
#else
|
||||
NOLESS(step_rate, F_CPU / 500000);
|
||||
NOLESS(step_rate, uint32_t(F_CPU / 500000U));
|
||||
step_rate -= F_CPU / 500000; // Correct for minimal speed
|
||||
if (step_rate >= (8 * 256)) { // higher step rate
|
||||
uint8_t tmp_step_rate = (step_rate & 0x00FF);
|
||||
uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0];
|
||||
uint16_t gain = (uint16_t)pgm_read_word_near(table_address + 2);
|
||||
uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
|
||||
gain = (uint16_t)pgm_read_word_near(table_address + 2);
|
||||
timer = MultiU16X8toH16(tmp_step_rate, gain);
|
||||
timer = (uint16_t)pgm_read_word_near(table_address) - timer;
|
||||
}
|
||||
else { // lower step rates
|
||||
uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
|
||||
table_address += ((step_rate) >> 1) & 0xFFFC;
|
||||
timer = (uint16_t)pgm_read_word_near(table_address);
|
||||
timer -= (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
|
||||
timer = (uint16_t)pgm_read_word_near(table_address)
|
||||
- (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
|
||||
}
|
||||
if (timer < 100) { // (20kHz - this should never happen)
|
||||
timer = 100;
|
||||
|
@ -25,6 +25,7 @@
|
||||
*/
|
||||
|
||||
#include "temperature.h"
|
||||
#include "endstops.h"
|
||||
|
||||
#include "../Marlin.h"
|
||||
#include "../lcd/ultralcd.h"
|
||||
@ -40,10 +41,6 @@
|
||||
#include "stepper.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) || ENABLED(PINS_DEBUGGING)
|
||||
#include "endstops.h"
|
||||
#endif
|
||||
|
||||
#include "printcounter.h"
|
||||
|
||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||
@ -1085,9 +1082,7 @@ void Temperature::updateTemperaturesFromRawValues() {
|
||||
watchdog_reset();
|
||||
#endif
|
||||
|
||||
CRITICAL_SECTION_START;
|
||||
temp_meas_ready = false;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
|
||||
@ -1727,6 +1722,7 @@ void Temperature::set_current_temp_raw() {
|
||||
* - Step the babysteps value for each axis towards 0
|
||||
* - For PINS_DEBUGGING, monitor and report endstop pins
|
||||
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
|
||||
* - Call planner.tick to count down its "ignore" time
|
||||
*/
|
||||
HAL_TEMP_TIMER_ISR {
|
||||
HAL_timer_isr_prologue(TEMP_TIMER_NUM);
|
||||
@ -2247,19 +2243,11 @@ void Temperature::isr() {
|
||||
}
|
||||
#endif // BABYSTEPPING
|
||||
|
||||
#if ENABLED(PINS_DEBUGGING)
|
||||
endstops.run_monitor(); // report changes in endstop status
|
||||
#endif
|
||||
// Poll endstops state, if required
|
||||
endstops.poll();
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
|
||||
extern volatile uint8_t e_hit;
|
||||
|
||||
if (e_hit && ENDSTOPS_ENABLED) {
|
||||
endstops.update(); // call endstop update routine
|
||||
e_hit--;
|
||||
}
|
||||
#endif
|
||||
// Periodically call the planner timer
|
||||
planner.tick();
|
||||
}
|
||||
|
||||
#if HAS_TEMP_SENSOR
|
||||
|
@ -29,7 +29,6 @@
|
||||
#include "../Marlin.h"
|
||||
#include "../lcd/ultralcd.h"
|
||||
#include "../module/planner.h"
|
||||
#include "../module/stepper.h"
|
||||
#include "../module/printcounter.h"
|
||||
#include "../core/language.h"
|
||||
#include "../gcode/queue.h"
|
||||
@ -983,7 +982,7 @@ void CardReader::printingHasFinished() {
|
||||
#endif
|
||||
|
||||
#if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
|
||||
stepper.cleaning_buffer_counter = 1; // The command will fire from the Stepper ISR
|
||||
planner.finish_and_disable();
|
||||
#endif
|
||||
print_job_timer.stop();
|
||||
if (print_job_timer.duration() > 60)
|
||||
|
Loading…
x
Reference in New Issue
Block a user