From 1929502e15c406ab102227d1ea056e09bccbb3ac Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Thu, 8 Dec 2016 22:51:56 -0800 Subject: [PATCH] Add const to some variables --- Marlin/planner.cpp | 48 +++++++++++++++++++++++----------------------- 1 file changed, 24 insertions(+), 24 deletions(-) diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 11b7fc82b..17746d921 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -141,8 +141,8 @@ float Planner::previous_speed[NUM_AXIS], #endif #if ENABLED(LIN_ADVANCE) - float Planner::extruder_advance_k = LIN_ADVANCE_K; - float Planner::position_float[NUM_AXIS] = { 0 }; + float Planner::extruder_advance_k = LIN_ADVANCE_K, + Planner::position_float[NUM_AXIS] = { 0 }; #endif #if ENABLED(ENSURE_SMOOTH_MOVES) @@ -654,7 +654,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const // The target position of the tool in absolute steps // Calculate target position in absolute steps //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow - long target[XYZE] = { + const long target[XYZE] = { lround(a * axis_steps_per_mm[X_AXIS]), lround(b * axis_steps_per_mm[Y_AXIS]), lround(c * axis_steps_per_mm[Z_AXIS]), @@ -670,16 +670,16 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const #endif #if ENABLED(LIN_ADVANCE) - float target_float[XYZE] = {a, b, c, e}; - float de_float = target_float[E_AXIS] - position_float[E_AXIS]; - float mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS])); + const float target_float[XYZE] = { a, b, c, e }, + de_float = target_float[E_AXIS] - position_float[E_AXIS], + mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS])); memcpy(position_float, target_float, sizeof(position_float)); #endif - long da = target[X_AXIS] - position[X_AXIS], - db = target[Y_AXIS] - position[Y_AXIS], - dc = target[Z_AXIS] - position[Z_AXIS]; + const long da = target[X_AXIS] - position[X_AXIS], + db = target[Y_AXIS] - position[Y_AXIS], + dc = target[Z_AXIS] - position[Z_AXIS]; /* SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s); @@ -755,11 +755,11 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const #endif if (de < 0) SBI(dm, E_AXIS); - float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01; - int32_t esteps = abs(esteps_float) + 0.5; + const float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01; + const int32_t esteps = abs(esteps_float) + 0.5; // Calculate the buffer head after we push this byte - int8_t next_buffer_head = next_block_index(block_buffer_head); + const uint8_t next_buffer_head = next_block_index(block_buffer_head); // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. @@ -852,7 +852,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder - for (int8_t i = 0; i < EXTRUDERS; i++) + for (uint8_t i = 0; i < EXTRUDERS; i++) if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; switch(extruder) { @@ -980,7 +980,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const // Calculate moves/second for this move. No divide by zero due to previous checks. float inverse_mm_s = fr_mm_s * inverse_millimeters; - int moves_queued = movesplanned(); + const uint8_t moves_queued = movesplanned(); // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill #if ENABLED(SLOWDOWN) @@ -1037,7 +1037,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const // If the index has changed (must have gone forward)... if (filwidth_delay_index[0] != filwidth_delay_index[1]) { filwidth_e_count = 0; // Reset the E movement counter - int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char + const int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char do { filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement @@ -1050,7 +1050,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const // Calculate and limit speed in mm/sec for each axis float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed LOOP_XYZE(i) { - float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s); + const float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s); if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs); } @@ -1058,7 +1058,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const #ifdef XY_FREQUENCY_LIMIT // Check and limit the xy direction change frequency - unsigned char direction_change = block->direction_bits ^ old_direction_bits; + const unsigned char direction_change = block->direction_bits ^ old_direction_bits; old_direction_bits = block->direction_bits; segment_time = lround((float)segment_time / speed_factor); @@ -1083,11 +1083,11 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const } ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time; - long max_x_segment_time = MAX3(xs0, xs1, xs2), - max_y_segment_time = MAX3(ys0, ys1, ys2), - min_xy_segment_time = min(max_x_segment_time, max_y_segment_time); + const long max_x_segment_time = MAX3(xs0, xs1, xs2), + max_y_segment_time = MAX3(ys0, ys1, ys2), + min_xy_segment_time = min(max_x_segment_time, max_y_segment_time); if (min_xy_segment_time < MAX_FREQ_TIME) { - float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME); + const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME); NOMORE(speed_factor, low_sf); } #endif // XY_FREQUENCY_LIMIT @@ -1100,7 +1100,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const } // Compute and limit the acceleration rate for the trapezoid generator. - float steps_per_mm = block->step_event_count * inverse_millimeters; + const float steps_per_mm = block->step_event_count * inverse_millimeters; uint32_t accel; if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) { // convert to: acceleration steps/sec^2 @@ -1256,7 +1256,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const if (limited) vmax_junction *= v_factor; // Now the transition velocity is known, which maximizes the shared exit / entry velocity while // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints. - float vmax_junction_threshold = vmax_junction * 0.99f; + const float vmax_junction_threshold = vmax_junction * 0.99f; if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) { // Not coasting. The machine will stop and start the movements anyway, // better to start the segment from start. @@ -1273,7 +1273,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. - float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); + const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); block->entry_speed = min(vmax_junction, v_allowable); // Initialize planner efficiency flags