diff --git a/Marlin/Conditionals_post.h b/Marlin/Conditionals_post.h
index b189af507..ca3678996 100644
--- a/Marlin/Conditionals_post.h
+++ b/Marlin/Conditionals_post.h
@@ -522,6 +522,9 @@
#define HAS_THERMALLY_PROTECTED_BED (HAS_TEMP_BED && HAS_HEATER_BED && ENABLED(THERMAL_PROTECTION_BED))
+ #define WATCH_HOTENDS (ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0)
+ #define WATCH_THE_BED (HAS_THERMALLY_PROTECTED_BED && WATCH_BED_TEMP_PERIOD > 0)
+
/**
* This setting is also used by M109 when trying to calculate
* a ballpark safe margin to prevent wait-forever situation.
diff --git a/Marlin/UBL_G29.cpp b/Marlin/UBL_G29.cpp
index 3d877cc8d..40bd33f55 100644
--- a/Marlin/UBL_G29.cpp
+++ b/Marlin/UBL_G29.cpp
@@ -1,1436 +1,1436 @@
-/**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see .
- *
- */
-
-#include "MarlinConfig.h"
-
-#if ENABLED(AUTO_BED_LEVELING_UBL)
- //#include "vector_3.h"
- //#include "qr_solve.h"
-
- #include "UBL.h"
- #include "Marlin.h"
- #include "hex_print_routines.h"
- #include "configuration_store.h"
- #include "planner.h"
- #include "ultralcd.h"
-
- #include
-
- void lcd_babystep_z();
- void lcd_return_to_status();
- bool lcd_clicked();
- void lcd_implementation_clear();
- void lcd_mesh_edit_setup(float initial);
- float lcd_mesh_edit();
- void lcd_z_offset_edit_setup(float);
- float lcd_z_offset_edit();
- extern float meshedit_done;
- extern long babysteps_done;
- extern float code_value_float();
- extern bool code_value_bool();
- extern bool code_has_value();
- extern float probe_pt(float x, float y, bool, int);
- extern bool set_probe_deployed(bool);
- #define DEPLOY_PROBE() set_probe_deployed(true)
- #define STOW_PROBE() set_probe_deployed(false)
- bool ProbeStay = true;
-
- constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
- ubl_3_point_1_Y = UBL_PROBE_PT_1_Y,
- ubl_3_point_2_X = UBL_PROBE_PT_2_X,
- ubl_3_point_2_Y = UBL_PROBE_PT_2_Y,
- ubl_3_point_3_X = UBL_PROBE_PT_3_X,
- ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
-
- #define SIZE_OF_LITTLE_RAISE 0
- #define BIG_RAISE_NOT_NEEDED 0
- extern void lcd_quick_feedback();
-
- /**
- * G29: Unified Bed Leveling by Roxy
- *
- * Parameters understood by this leveling system:
- *
- * A Activate Activate the Unified Bed Leveling system.
- *
- * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
- * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
- * as a shim that the nozzle will pinch as it is lowered. The idea is that you
- * can easily feel the nozzle getting to the same height by the amount of resistance
- * the business card exhibits to movement. You should try to achieve the same amount
- * of resistance on each probed point to facilitate accurate and repeatable measurements.
- * You should be very careful not to drive the nozzle into the bussiness card with a
- * lot of force as it is very possible to cause damage to your printer if your are
- * careless. If you use the B option with G29 P2 B you can leave the number parameter off
- * on its first use to enable measurement of the business card thickness. Subsequent usage
- * of the B parameter can have the number previously measured supplied to the command.
- * Incidently, you are much better off using something like a Spark Gap feeler gauge than
- * something that compresses like a Business Card.
- *
- * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
- * further refine the behaviour of several other commands. Issuing a G29 P1 C will
- * continue the generation of a partially constructed Mesh without invalidating what has
- * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
- * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
- * it indicates to use the current location instead of defaulting to the center of the print bed.
- *
- * D Disable Disable the Unified Bed Leveling system.
- *
- * E Stow_probe Stow the probe after each sampled point.
- *
- * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
- * specified height, no correction is applied and natural printer kenimatics take over. If no
- * number is specified for the command, 10mm is assumed to be reasonable.
- *
- * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
- *
- * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
- * default is 5mm.
- *
- * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
- * the X and Y parameter are used. If no number is specified, only the closest Mesh
- * point to the location is invalidated. The M parameter is available as well to produce
- * a map after the operation. This command is useful to invalidate a portion of the
- * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
- * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
- * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
- * the bed and use this feature to select the center of the area (or cell) you want to
- * invalidate.
- *
- * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
- * command literally performs a diff between two Meshes.
- *
- * L Load * Load Mesh from the previously activated location in the EEPROM.
- *
- * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
- * for subsequent Load and Store operations.
- *
- * O Map * Display the Mesh Map Topology.
- * The parameter can be specified alone (ie. G29 O) or in combination with many of the
- * other commands. The Mesh Map option works with all of the Phase
- * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
- * specified. A map type of 0 is the default is user readable. A map type of 1 can
- * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
- * mesh.
- *
- * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
- * N option. In general, you should not do this. This can only be done safely with
- * commands that do not move the nozzle.
- *
- * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
- * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
- * each additional Phase that processes it.
- *
- * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
- * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
- * was turned on. Setting the entire Mesh to Zero is a special case that allows
- * a subsequent G or T leveling operation for backward compatibility.
- *
- * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
- * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
- * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
- * generated. This will be handled in Phase 2. If the Phase 1 command is given the
- * C (Continue) parameter it does not invalidate the Mesh prior to automatically
- * probing needed locations. This allows you to invalidate portions of the Mesh but still
- * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
- * parameter can be given to prioritize where the command should be trying to measure points.
- * If the X and Y parameters are not specified the current probe position is used. Phase 1
- * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
- * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
- * It will suspend generation of the Mesh if it sees the user request that. (This check is
- * only done between probe points. You will need to press and hold the switch until the
- * Phase 1 command can detect it.)
- *
- * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
- * parameter to control the height between Mesh points. The default height for movement
- * between Mesh points is 5mm. A smaller number can be used to make this part of the
- * calibration less time consuming. You will be running the nozzle down until it just barely
- * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
- * Use caution and move slowly. It is possible to damage your printer if you are careless.
- * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
- * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
- *
- * The H parameter can be set negative if your Mesh dips in a large area. You can press
- * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
- * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
- * area you are manually probing. Note that the command tries to start you in a corner
- * of the bed where movement will be predictable. You can force the location to be used in
- * the distance calculations by using the X and Y parameters. You may find it is helpful to
- * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
- * the nozzle will need to move in order to complete the command. The C parameter is
- * available on the Phase 2 command also and indicates the search for points to measure should
- * be done based on the current location of the nozzle.
- *
- * A B parameter is also available for this command and described up above. It places the
- * manual probe subsystem into Business Card mode where the thickness of a business care is
- * measured and then used to accurately set the nozzle height in all manual probing for the
- * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
- * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
- * better results if you use a flexible Shim that does not compress very much. That makes it
- * easier for you to get the nozzle to press with similar amounts of force against the shim so you
- * can get accurate measurements. As you are starting to touch the nozzle against the shim try
- * to get it to grasp the shim with the same force as when you measured the thickness of the
- * shim at the start of the command.
- *
- * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
- * of the Mesh being built.
- *
- * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
- * used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
- * is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
- * of points to set. If the R parameter is specified the current nozzle position is used to
- * find the closest points to alter unless the X and Y parameter are used to specify the fill
- * location.
- *
- * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
- * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
- * (More work and details on doing this later!)
- * The System will search for the closest Mesh Point to the nozzle. It will move the
- * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
- * so it is just barely touching the bed. When the user clicks the control, the System
- * will lock in that height for that point in the Mesh Compensation System.
- *
- * Phase 4 has several additional parameters that the user may find helpful. Phase 4
- * can be started at a specific location by specifying an X and Y parameter. Phase 4
- * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
- * parameter. If the Repetition count is not specified, it is assumed the user wishes
- * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
- * The command can be terminated early (or after the area of interest has been edited) by
- * pressing and holding the encoder wheel until the system recognizes the exit request.
- * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
- *
- * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
- * information left on the printer's bed from the G26 command it is very straight forward
- * and easy to fine tune the Mesh. One concept that is important to remember and that
- * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
- * If you have too little clearance and not much plastic was extruded in an area, you want to
- * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
- * RAISE the Mesh Point at that location.
- *
- *
- * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
- * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
- * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
- * execute a G29 P6 C .
- *
- * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
- * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
- * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
- * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
- * 0.000 at the Z Home location.
- *
- * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
- * command is not anticipated to be of much value to the typical user. It is intended
- * for developers to help them verify correct operation of the Unified Bed Leveling System.
- *
- * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
- * current state of the Unified Bed Leveling system in the EEPROM.
- *
- * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
- * for subsequent Load and Store operations. It will also store the current state of
- * the Unified Bed Leveling system in the EEPROM.
- *
- * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
- * the system at a later date. The text generated can be saved and later sent by PronterFace or
- * Repetier Host to reconstruct the current mesh on another machine.
- *
- * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
- *
- * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
- * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
- * is useful when the entire bed does not need to be probed because it will be adjusted.
- *
- * W What? Display valuable data the Unified Bed Leveling System knows.
- *
- * X # * * X Location for this line of commands
- *
- * Y # * * Y Location for this line of commands
- *
- * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
- * by just doing a G29 Z
- *
- * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
- * zprobe_zoffset is added to the calculation.
- *
- *
- * Release Notes:
- * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
- * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
- * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
- * respectively.)
- *
- * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
- * the Unified Bed Leveling probes points further and further away from the starting location. (The
- * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
- * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
- * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
- * perform a small print and check out your settings quicker. You do not need to populate the
- * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
- * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
- * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
- *
- * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
- * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
- * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
- * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
- * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
- * this is going to be helpful to the users!)
- *
- * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
- * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
- * we now have the functionality and features of all three systems combined.
- */
-
- // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
- static int g29_verbose_level, phase_value = -1, repetition_cnt,
- storage_slot = 0, map_type; //unlevel_value = -1;
- static bool repeat_flag, c_flag, x_flag, y_flag;
- static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
-
- #if ENABLED(ULTRA_LCD)
- extern void lcd_setstatus(const char* message, const bool persist);
- extern void lcd_setstatuspgm(const char* message, const uint8_t level);
- #endif
-
- void gcode_G29() {
- SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start);
- if (ubl.eeprom_start < 0) {
- SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
- SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
- return;
- }
-
- if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
- gcode_G28();
-
- if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
-
- // Invalidate Mesh Points. This command is a little bit asymetrical because
- // it directly specifies the repetition count and does not use the 'R' parameter.
- if (code_seen('I')) {
- repetition_cnt = code_has_value() ? code_value_int() : 1;
- while (repetition_cnt--) {
- const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
- if (location.x_index < 0) {
- SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
- break; // No more invalid Mesh Points to populate
- }
- ubl.z_values[location.x_index][location.y_index] = NAN;
- }
- SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
- }
-
- if (code_seen('Q')) {
-
- const int test_pattern = code_has_value() ? code_value_int() : -1;
- if (!WITHIN(test_pattern, 0, 2)) {
- SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
- return;
- }
- SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
- switch (test_pattern) {
- case 0:
- for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape - similar to
- for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
- const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
- p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
- ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
- }
- }
- break;
- case 1:
- for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised
- ubl.z_values[x][x] += 9.999;
- ubl.z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
- }
- break;
- case 2:
- // Allow the user to specify the height because 10mm is a little extreme in some cases.
- for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
- for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
- ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
- break;
- }
- }
-
- /*
- if (code_seen('U')) {
- unlevel_value = code_value_int();
- //if (!WITHIN(unlevel_value, 0, 7)) {
- // SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
- // return;
- //}
- }
- //*/
-
- if (code_seen('P')) {
- phase_value = code_value_int();
- if (!WITHIN(phase_value, 0, 7)) {
- SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
- return;
- }
- switch (phase_value) {
- case 0:
- //
- // Zero Mesh Data
- //
- ubl.reset();
- SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
- break;
-
- case 1:
- //
- // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
- //
- if (!code_seen('C') ) {
- ubl.invalidate();
- SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
- }
- if (g29_verbose_level > 1) {
- SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
- SERIAL_ECHO(x_pos);
- SERIAL_ECHOPAIR(",", y_pos);
- SERIAL_PROTOCOLLNPGM(")\n");
- }
- probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
- code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
- break;
-
- case 2: {
- //
- // Manually Probe Mesh in areas that can't be reached by the probe
- //
- SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
- if (!x_flag && !y_flag) { // use a good default location for the path
- x_pos = X_MIN_POS;
- y_pos = Y_MIN_POS;
- if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
- x_pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
-
- if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
- y_pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
-
- } // For now, until that is decided, it can be forced with the X
- // and Y parameters.
- if (code_seen('C')) {
- x_pos = current_position[X_AXIS];
- y_pos = current_position[Y_AXIS];
- }
-
- const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
-
- if (code_seen('B')) {
- card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
-
- if (fabs(card_thickness) > 1.5) {
- SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
- return;
- }
- }
- manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
-
- } break;
-
- case 3: {
- //
- // Populate invalid Mesh areas with a constant
- //
- const float height = code_seen('C') ? ubl_constant : 0.0;
- // If no repetition is specified, do the whole Mesh
- if (!repeat_flag) repetition_cnt = 9999;
- while (repetition_cnt--) {
- const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
- if (location.x_index < 0) break; // No more invalid Mesh Points to populate
- ubl.z_values[location.x_index][location.y_index] = height;
- }
- } break;
-
- case 4:
- //
- // Fine Tune (i.e., Edit) the Mesh
- //
- fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
- break;
- case 5:
- find_mean_mesh_height();
- break;
- case 6:
- shift_mesh_height();
- break;
-
- case 10:
- // [DEBUG] Pay no attention to this stuff. It can be removed soon.
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- ubl.has_control_of_lcd_panel++;
- while (!ubl_lcd_clicked()) {
- safe_delay(250);
- if (ubl.encoder_diff) {
- SERIAL_ECHOLN((int)ubl.encoder_diff);
- ubl.encoder_diff = 0;
- }
- }
- SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
- ubl.has_control_of_lcd_panel = false;
- KEEPALIVE_STATE(IN_HANDLER);
- break;
-
- case 11:
- // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- wait_for_user = true;
- while (wait_for_user) {
- safe_delay(250);
- if (ubl.encoder_diff) {
- SERIAL_ECHOLN((int)ubl.encoder_diff);
- ubl.encoder_diff = 0;
- }
- }
- SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
- KEEPALIVE_STATE(IN_HANDLER);
- break;
- }
- }
-
- if (code_seen('T')) {
- const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X),
- lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X),
- lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X),
- ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y),
- ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y),
- ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y);
-
- float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level),
- z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level),
- z3 = probe_pt(lx3, ly3, true /*Stow Flag*/, g29_verbose_level);
-
- // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
- // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
-
- z1 -= ubl.get_z_correction(lx1, ly1);
- z2 -= ubl.get_z_correction(lx2, ly2);
- z3 -= ubl.get_z_correction(lx3, ly3);
-
- do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
- tilt_mesh_based_on_3pts(z1, z2, z3);
- }
-
- //
- // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
- // good to have the extra information. Soon... we prune this to just a few items
- //
- if (code_seen('W')) g29_what_command();
-
- //
- // When we are fully debugged, the EEPROM dump command will get deleted also. But
- // right now, it is good to have the extra information. Soon... we prune this.
- //
- if (code_seen('J')) g29_eeprom_dump(); // EEPROM Dump
-
- //
- // When we are fully debugged, this may go away. But there are some valid
- // use cases for the users. So we can wait and see what to do with it.
- //
-
- if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
- g29_compare_current_mesh_to_stored_mesh();
-
- //
- // Load a Mesh from the EEPROM
- //
-
- if (code_seen('L')) { // Load Current Mesh Data
- storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
-
- const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
-
- if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
- return;
- }
- ubl.load_mesh(storage_slot);
- ubl.state.eeprom_storage_slot = storage_slot;
- if (storage_slot != ubl.state.eeprom_storage_slot)
- ubl.store_state();
- SERIAL_PROTOCOLLNPGM("Done.\n");
- }
-
- //
- // Store a Mesh in the EEPROM
- //
-
- if (code_seen('S')) { // Store (or Save) Current Mesh Data
- storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
-
- if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
- SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
- for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
- for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
- if (!isnan(ubl.z_values[x][y])) {
- SERIAL_ECHOPAIR("M421 I ", x);
- SERIAL_ECHOPAIR(" J ", y);
- SERIAL_ECHOPGM(" Z ");
- SERIAL_ECHO_F(ubl.z_values[x][y], 6);
- SERIAL_EOL;
- }
- return;
- }
-
- const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
-
- if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
- SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
- goto LEAVE;
- }
- ubl.store_mesh(storage_slot);
- ubl.state.eeprom_storage_slot = storage_slot;
- //
- // if (storage_slot != ubl.state.eeprom_storage_slot)
- ubl.store_state(); // Always save an updated copy of the UBL State info
-
- SERIAL_PROTOCOLLNPGM("Done.\n");
- }
-
- if (code_seen('O') || code_seen('M'))
- ubl.display_map(code_has_value() ? code_value_int() : 0);
-
- if (code_seen('Z')) {
- if (code_has_value())
- ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
- else {
- save_ubl_active_state_and_disable();
- //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
-
- ubl.has_control_of_lcd_panel++; // Grab the LCD Hardware
- measured_z = 1.5;
- do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
- // The user is not going to be locking in a new Z-Offset very often so
- // it won't be that painful to spin the Encoder Wheel for 1.5mm
- lcd_implementation_clear();
- lcd_z_offset_edit_setup(measured_z);
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
-
- do {
- measured_z = lcd_z_offset_edit();
- idle();
- do_blocking_move_to_z(measured_z);
- } while (!ubl_lcd_clicked());
-
- ubl.has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
- // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
- // or here. So, until we are done looking for a long Encoder Wheel Press,
- // we need to take control of the panel
-
- KEEPALIVE_STATE(IN_HANDLER);
-
- lcd_return_to_status();
-
- const millis_t nxt = millis() + 1500UL;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- lcd_setstatuspgm("Z-Offset Stopped");
- restore_ubl_active_state_and_leave();
- goto LEAVE;
- }
- }
- ubl.has_control_of_lcd_panel = false;
- safe_delay(20); // We don't want any switch noise.
-
- ubl.state.z_offset = measured_z;
-
- lcd_implementation_clear();
- restore_ubl_active_state_and_leave();
- }
- }
-
- LEAVE:
-
- #if ENABLED(ULTRA_LCD)
- lcd_reset_alert_level();
- lcd_setstatuspgm("");
- lcd_quick_feedback();
- #endif
-
- ubl.has_control_of_lcd_panel = false;
- }
-
- void find_mean_mesh_height() {
- uint8_t x, y;
- int n;
- float sum, sum_of_diff_squared, sigma, difference, mean;
-
- sum = sum_of_diff_squared = 0.0;
- n = 0;
- for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
- for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
- if (!isnan(ubl.z_values[x][y])) {
- sum += ubl.z_values[x][y];
- n++;
- }
-
- mean = sum / n;
-
- //
- // Now do the sumation of the squares of difference from mean
- //
- for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
- for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
- if (!isnan(ubl.z_values[x][y])) {
- difference = (ubl.z_values[x][y] - mean);
- sum_of_diff_squared += difference * difference;
- }
-
- SERIAL_ECHOLNPAIR("# of samples: ", n);
- SERIAL_ECHOPGM("Mean Mesh Height: ");
- SERIAL_ECHO_F(mean, 6);
- SERIAL_EOL;
-
- sigma = sqrt(sum_of_diff_squared / (n + 1));
- SERIAL_ECHOPGM("Standard Deviation: ");
- SERIAL_ECHO_F(sigma, 6);
- SERIAL_EOL;
-
- if (c_flag)
- for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
- for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
- if (!isnan(ubl.z_values[x][y]))
- ubl.z_values[x][y] -= mean + ubl_constant;
- }
-
- void shift_mesh_height() {
- for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
- for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
- if (!isnan(ubl.z_values[x][y]))
- ubl.z_values[x][y] += ubl_constant;
- }
-
- /**
- * Probe all invalidated locations of the mesh that can be reached by the probe.
- * This attempts to fill in locations closest to the nozzle's start location first.
- */
- void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
- mesh_index_pair location;
-
- ubl.has_control_of_lcd_panel++;
- save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
- DEPLOY_PROBE();
-
- do {
- if (ubl_lcd_clicked()) {
- SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
- lcd_quick_feedback();
- STOW_PROBE();
- while (ubl_lcd_clicked()) idle();
- ubl.has_control_of_lcd_panel = false;
- restore_ubl_active_state_and_leave();
- safe_delay(50); // Debounce the Encoder wheel
- return;
- }
-
- location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
- if (location.x_index >= 0 && location.y_index >= 0) {
-
- const float rawx = ubl.mesh_index_to_xpos[location.x_index],
- rawy = ubl.mesh_index_to_ypos[location.y_index];
-
- // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
- if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
- ubl.has_control_of_lcd_panel = false;
- goto LEAVE;
- }
- const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
- ubl.z_values[location.x_index][location.y_index] = measured_z;
- }
-
- if (do_ubl_mesh_map) ubl.display_map(map_type);
-
- } while (location.x_index >= 0 && location.y_index >= 0);
-
- LEAVE:
-
- STOW_PROBE();
- restore_ubl_active_state_and_leave();
-
- do_blocking_move_to_xy(
- constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
- constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
- );
- }
-
- vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
- float c, d, t;
- int i, j;
-
- vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
- (ubl_3_point_1_Y - ubl_3_point_2_Y),
- (z1 - z2) ),
-
- v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
- (ubl_3_point_3_Y - ubl_3_point_2_Y),
- (z3 - z2) ),
-
- normal = vector_3::cross(v1, v2);
-
- // printf("[%f,%f,%f] ", normal.x, normal.y, normal.z);
-
- /**
- * This code does two things. This vector is normal to the tilted plane.
- * However, we don't know its direction. We need it to point up. So if
- * Z is negative, we need to invert the sign of all components of the vector
- * We also need Z to be unity because we are going to be treating this triangle
- * as the sin() and cos() of the bed's tilt
- */
- const float inv_z = 1.0 / normal.z;
- normal.x *= inv_z;
- normal.y *= inv_z;
- normal.z = 1.0;
-
- //
- // All of 3 of these points should give us the same d constant
- //
- t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
- d = t + normal.z * z1;
- c = d - t;
- SERIAL_ECHOPGM("d from 1st point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_ECHOPGM(" c: ");
- SERIAL_ECHO_F(c, 6);
- SERIAL_EOL;
- t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
- d = t + normal.z * z2;
- c = d - t;
- SERIAL_ECHOPGM("d from 2nd point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_ECHOPGM(" c: ");
- SERIAL_ECHO_F(c, 6);
- SERIAL_EOL;
- t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
- d = t + normal.z * z3;
- c = d - t;
- SERIAL_ECHOPGM("d from 3rd point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_ECHOPGM(" c: ");
- SERIAL_ECHO_F(c, 6);
- SERIAL_EOL;
-
- for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
- for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
- c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
- ubl.z_values[i][j] += c;
- }
- }
- return normal;
- }
-
- float use_encoder_wheel_to_measure_point() {
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
- idle();
- if (ubl.encoder_diff) {
- do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
- ubl.encoder_diff = 0;
- }
- }
- KEEPALIVE_STATE(IN_HANDLER);
- return current_position[Z_AXIS];
- }
-
- float measure_business_card_thickness(const float &in_height) {
-
- ubl.has_control_of_lcd_panel++;
- save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
-
- SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
- do_blocking_move_to_z(in_height);
- do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
- //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
-
- const float z1 = use_encoder_wheel_to_measure_point();
- do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
- ubl.has_control_of_lcd_panel = false;
-
- SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
- const float z2 = use_encoder_wheel_to_measure_point();
- do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
-
- if (g29_verbose_level > 1) {
- SERIAL_PROTOCOLPGM("Business Card is: ");
- SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
- SERIAL_PROTOCOLLNPGM("mm thick.");
- }
- restore_ubl_active_state_and_leave();
- return abs(z1 - z2);
- }
-
- void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
-
- ubl.has_control_of_lcd_panel++;
- save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
- do_blocking_move_to_z(z_clearance);
- do_blocking_move_to_xy(lx, ly);
-
- float last_x = -9999.99, last_y = -9999.99;
- mesh_index_pair location;
- do {
- if (do_ubl_mesh_map) ubl.display_map(map_type);
-
- location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
- // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
- if (location.x_index < 0 && location.y_index < 0) continue;
-
- const float rawx = ubl.mesh_index_to_xpos[location.x_index],
- rawy = ubl.mesh_index_to_ypos[location.y_index];
-
- // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
- if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
- ubl.has_control_of_lcd_panel = false;
- goto LEAVE;
- }
-
- const float xProbe = LOGICAL_X_POSITION(rawx),
- yProbe = LOGICAL_Y_POSITION(rawy),
- dx = xProbe - last_x,
- dy = yProbe - last_y;
-
- if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
- do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
- else
- do_blocking_move_to_z(z_clearance);
-
- do_blocking_move_to_xy(xProbe, yProbe);
-
- last_x = xProbe;
- last_y = yProbe;
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- ubl.has_control_of_lcd_panel = true;
-
- while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
- idle();
- if (ubl.encoder_diff) {
- do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
- ubl.encoder_diff = 0;
- }
- }
-
- const millis_t nxt = millis() + 1500L;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- lcd_quick_feedback();
- while (ubl_lcd_clicked()) idle();
- ubl.has_control_of_lcd_panel = false;
- KEEPALIVE_STATE(IN_HANDLER);
- restore_ubl_active_state_and_leave();
- return;
- }
- }
-
- ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
- if (g29_verbose_level > 2) {
- SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
- SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
- SERIAL_EOL;
- }
- } while (location.x_index >= 0 && location.y_index >= 0);
-
- if (do_ubl_mesh_map) ubl.display_map(map_type);
-
- LEAVE:
- restore_ubl_active_state_and_leave();
- KEEPALIVE_STATE(IN_HANDLER);
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- do_blocking_move_to_xy(lx, ly);
- }
-
- bool g29_parameter_parsing() {
- #if ENABLED(ULTRA_LCD)
- lcd_setstatuspgm("Doing G29 UBL!");
- lcd_quick_feedback();
- #endif
-
- g29_verbose_level = code_seen('V') ? code_value_int() : 0;
- if (!WITHIN(g29_verbose_level, 0, 4)) {
- SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
- return UBL_ERR;
- }
-
- x_flag = code_seen('X') && code_has_value();
- x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
- if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
- SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
- return UBL_ERR;
- }
-
- y_flag = code_seen('Y') && code_has_value();
- y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
- if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
- SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
- return UBL_ERR;
- }
-
- if (x_flag != y_flag) {
- SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
- return UBL_ERR;
- }
-
- if (code_seen('A')) { // Activate the Unified Bed Leveling System
- ubl.state.active = 1;
- SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
- ubl.store_state();
- }
-
- c_flag = code_seen('C') && code_has_value();
- ubl_constant = c_flag ? code_value_float() : 0.0;
-
- if (code_seen('D')) { // Disable the Unified Bed Leveling System
- ubl.state.active = 0;
- SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
- ubl.store_state();
- }
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- if (code_seen('F') && code_has_value()) {
- const float fh = code_value_float();
- if (!WITHIN(fh, 0.0, 100.0)) {
- SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
- return UBL_ERR;
- }
- ubl.state.g29_correction_fade_height = fh;
- ubl.state.g29_fade_height_multiplier = 1.0 / fh;
- }
- #endif
-
- repeat_flag = code_seen('R');
- repetition_cnt = repeat_flag ? (code_has_value() ? code_value_int() : 9999) : 1;
- if (repetition_cnt < 1) {
- SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
- return UBL_ERR;
- }
-
- map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
- if (!WITHIN(map_type, 0, 1)) {
- SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
- return UBL_ERR;
- }
-
- /*
- if (code_seen('M')) { // Check if a map type was specified
- map_type = code_has_value() ? code_value_int() : 0;
- if (!WITHIN(map_type, 0, 1)) {
- SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
- return UBL_ERR;
- }
- }
- //*/
-
- return UBL_OK;
- }
-
- /**
- * This function goes away after G29 debug is complete. But for right now, it is a handy
- * routine to dump binary data structures.
- */
- void dump(char * const str, const float &f) {
- char *ptr;
-
- SERIAL_PROTOCOL(str);
- SERIAL_PROTOCOL_F(f, 8);
- SERIAL_PROTOCOLPGM(" ");
- ptr = (char*)&f;
- for (uint8_t i = 0; i < 4; i++)
- SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
- SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
- SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
-
- if (f == -INFINITY)
- SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
-
- SERIAL_EOL;
- }
-
- static int ubl_state_at_invocation = 0,
- ubl_state_recursion_chk = 0;
-
- void save_ubl_active_state_and_disable() {
- ubl_state_recursion_chk++;
- if (ubl_state_recursion_chk != 1) {
- SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
- lcd_setstatuspgm("save_UBL_active() error");
- lcd_quick_feedback();
- return;
- }
- ubl_state_at_invocation = ubl.state.active;
- ubl.state.active = 0;
- }
-
- void restore_ubl_active_state_and_leave() {
- if (--ubl_state_recursion_chk) {
- SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
- lcd_setstatuspgm("restore_UBL_active() error");
- lcd_quick_feedback();
- return;
- }
- ubl.state.active = ubl_state_at_invocation;
- }
-
-
- /**
- * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
- * good to have the extra information. Soon... we prune this to just a few items
- */
- void g29_what_command() {
- const uint16_t k = E2END - ubl.eeprom_start;
-
- SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " ");
- if (ubl.state.active)
- SERIAL_PROTOCOLCHAR('A');
- else
- SERIAL_PROTOCOLPGM("In");
- SERIAL_PROTOCOLLNPGM("ctive.\n");
- safe_delay(50);
-
- if (ubl.state.eeprom_storage_slot == -1)
- SERIAL_PROTOCOLPGM("No Mesh Loaded.");
- else {
- SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
- SERIAL_PROTOCOLPGM(" Loaded.");
- }
- SERIAL_EOL;
- safe_delay(50);
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- SERIAL_PROTOCOLLNPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height);
- #endif
-
- SERIAL_PROTOCOLPGM("z_offset: ");
- SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
- SERIAL_EOL;
- safe_delay(50);
-
- SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
- for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
- SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
- SERIAL_PROTOCOLPGM(" ");
- safe_delay(50);
- }
- SERIAL_EOL;
-
- SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
- for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
- SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
- SERIAL_PROTOCOLPGM(" ");
- safe_delay(50);
- }
- SERIAL_EOL;
-
- #if HAS_KILL
- SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
- SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
- #endif
- SERIAL_EOL;
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
- SERIAL_EOL;
- SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
- SERIAL_EOL;
- safe_delay(50);
- SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start));
-
- SERIAL_PROTOCOLLNPAIR("end of EEPROM : 0x", hex_word(E2END));
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
- SERIAL_EOL;
- SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
- SERIAL_EOL;
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
- safe_delay(50);
-
- SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
- SERIAL_PROTOCOLLNPGM(" meshes.\n");
- safe_delay(50);
-
- SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
-
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
- safe_delay(50);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
- safe_delay(50);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
- safe_delay(50);
- SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
- SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
- SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
- SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
- SERIAL_EOL;
- safe_delay(50);
-
- if (!ubl.sanity_check())
- SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
- }
-
- /**
- * When we are fully debugged, the EEPROM dump command will get deleted also. But
- * right now, it is good to have the extra information. Soon... we prune this.
- */
- void g29_eeprom_dump() {
- unsigned char cccc;
- uint16_t kkkk;
-
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM("EEPROM Dump:");
- for (uint16_t i = 0; i < E2END + 1; i += 16) {
- if (!(i & 0x3)) idle();
- print_hex_word(i);
- SERIAL_ECHOPGM(": ");
- for (uint16_t j = 0; j < 16; j++) {
- kkkk = i + j;
- eeprom_read_block(&cccc, (void *)kkkk, 1);
- print_hex_byte(cccc);
- SERIAL_ECHO(' ');
- }
- SERIAL_EOL;
- }
- SERIAL_EOL;
- }
-
- /**
- * When we are fully debugged, this may go away. But there are some valid
- * use cases for the users. So we can wait and see what to do with it.
- */
- void g29_compare_current_mesh_to_stored_mesh() {
- float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
-
- if (!code_has_value()) {
- SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
- return;
- }
- storage_slot = code_value_int();
-
- int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
-
- if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
- return;
- }
-
- j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
- eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
-
- SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
- SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing
- // the address in the EEPROM where the Mesh is stored.
-
- for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
- for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
- ubl.z_values[x][y] -= tmp_z_values[x][y];
- }
-
- mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
- float distance, closest = far_flag ? -99999.99 : 99999.99;
- mesh_index_pair return_val;
-
- return_val.x_index = return_val.y_index = -1;
-
- const float current_x = current_position[X_AXIS],
- current_y = current_position[Y_AXIS];
-
- // Get our reference position. Either the nozzle or probe location.
- const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
- py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
-
- for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
- for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
-
- if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
- || (type == REAL && !isnan(ubl.z_values[i][j]))
- || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
- ) {
-
- // We only get here if we found a Mesh Point of the specified type
-
- const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
- rawy = ubl.mesh_index_to_ypos[j];
-
- // If using the probe as the reference there are some unreachable locations.
- // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
-
- if (probe_as_reference &&
- (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
- ) continue;
-
- // Unreachable. Check if it's the closest location to the nozzle.
- // Add in a weighting factor that considers the current location of the nozzle.
-
- const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
- my = LOGICAL_Y_POSITION(rawy);
-
- distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
-
- if (far_flag) { // If doing the far_flag action, we want to be as far as possible
- for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
- for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
- if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
- distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
- + sq(j - l) * (MESH_Y_DIST) * .05;
- }
- }
- }
- }
-
- if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
- closest = distance; // We found a closer/farther location with
- return_val.x_index = i; // the specified type of mesh value.
- return_val.y_index = j;
- return_val.distance = closest;
- }
- }
- } // for j
- } // for i
-
- return return_val;
- }
-
- void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
- mesh_index_pair location;
- uint16_t not_done[16];
- int32_t round_off;
-
- save_ubl_active_state_and_disable();
- memset(not_done, 0xFF, sizeof(not_done));
-
- #if ENABLED(ULTRA_LCD)
- lcd_setstatuspgm("Fine Tuning Mesh");
- #endif
-
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- do_blocking_move_to_xy(lx, ly);
- do {
- if (do_ubl_mesh_map) ubl.display_map(map_type);
-
- location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx, ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
- // It doesn't matter if the probe can not reach this
- // location. This is a manual edit of the Mesh Point.
- if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
-
- bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
- // different location the next time through the loop
-
- const float rawx = ubl.mesh_index_to_xpos[location.x_index],
- rawy = ubl.mesh_index_to_ypos[location.y_index];
-
- // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
- if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
- ubl.has_control_of_lcd_panel = false;
- goto FINE_TUNE_EXIT;
- }
-
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
- do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
-
- float new_z = ubl.z_values[location.x_index][location.y_index];
-
- round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
- new_z = float(round_off) / 1000.0;
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- ubl.has_control_of_lcd_panel = true;
-
- lcd_implementation_clear();
- lcd_mesh_edit_setup(new_z);
-
- do {
- new_z = lcd_mesh_edit();
- idle();
- } while (!ubl_lcd_clicked());
-
- lcd_return_to_status();
-
- ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
- // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
- // or here.
-
- const millis_t nxt = millis() + 1500UL;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- lcd_return_to_status();
- //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- lcd_setstatuspgm("Mesh Editing Stopped");
-
- while (ubl_lcd_clicked()) idle();
-
- goto FINE_TUNE_EXIT;
- }
- }
-
- safe_delay(20); // We don't want any switch noise.
-
- ubl.z_values[location.x_index][location.y_index] = new_z;
-
- lcd_implementation_clear();
-
- } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt);
-
- FINE_TUNE_EXIT:
-
- ubl.has_control_of_lcd_panel = false;
- KEEPALIVE_STATE(IN_HANDLER);
-
- if (do_ubl_mesh_map) ubl.display_map(map_type);
- restore_ubl_active_state_and_leave();
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-
- do_blocking_move_to_xy(lx, ly);
-
- #if ENABLED(ULTRA_LCD)
- lcd_setstatuspgm("Done Editing Mesh");
- #endif
- SERIAL_ECHOLNPGM("Done Editing Mesh");
- }
-
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ */
+
+#include "MarlinConfig.h"
+
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+ //#include "vector_3.h"
+ //#include "qr_solve.h"
+
+ #include "UBL.h"
+ #include "Marlin.h"
+ #include "hex_print_routines.h"
+ #include "configuration_store.h"
+ #include "planner.h"
+ #include "ultralcd.h"
+
+ #include
+
+ void lcd_babystep_z();
+ void lcd_return_to_status();
+ bool lcd_clicked();
+ void lcd_implementation_clear();
+ void lcd_mesh_edit_setup(float initial);
+ float lcd_mesh_edit();
+ void lcd_z_offset_edit_setup(float);
+ float lcd_z_offset_edit();
+ extern float meshedit_done;
+ extern long babysteps_done;
+ extern float code_value_float();
+ extern bool code_value_bool();
+ extern bool code_has_value();
+ extern float probe_pt(float x, float y, bool, int);
+ extern bool set_probe_deployed(bool);
+ #define DEPLOY_PROBE() set_probe_deployed(true)
+ #define STOW_PROBE() set_probe_deployed(false)
+ bool ProbeStay = true;
+
+ constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
+ ubl_3_point_1_Y = UBL_PROBE_PT_1_Y,
+ ubl_3_point_2_X = UBL_PROBE_PT_2_X,
+ ubl_3_point_2_Y = UBL_PROBE_PT_2_Y,
+ ubl_3_point_3_X = UBL_PROBE_PT_3_X,
+ ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
+
+ #define SIZE_OF_LITTLE_RAISE 0
+ #define BIG_RAISE_NOT_NEEDED 0
+ extern void lcd_quick_feedback();
+
+ /**
+ * G29: Unified Bed Leveling by Roxy
+ *
+ * Parameters understood by this leveling system:
+ *
+ * A Activate Activate the Unified Bed Leveling system.
+ *
+ * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
+ * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
+ * as a shim that the nozzle will pinch as it is lowered. The idea is that you
+ * can easily feel the nozzle getting to the same height by the amount of resistance
+ * the business card exhibits to movement. You should try to achieve the same amount
+ * of resistance on each probed point to facilitate accurate and repeatable measurements.
+ * You should be very careful not to drive the nozzle into the bussiness card with a
+ * lot of force as it is very possible to cause damage to your printer if your are
+ * careless. If you use the B option with G29 P2 B you can leave the number parameter off
+ * on its first use to enable measurement of the business card thickness. Subsequent usage
+ * of the B parameter can have the number previously measured supplied to the command.
+ * Incidently, you are much better off using something like a Spark Gap feeler gauge than
+ * something that compresses like a Business Card.
+ *
+ * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
+ * further refine the behaviour of several other commands. Issuing a G29 P1 C will
+ * continue the generation of a partially constructed Mesh without invalidating what has
+ * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
+ * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
+ * it indicates to use the current location instead of defaulting to the center of the print bed.
+ *
+ * D Disable Disable the Unified Bed Leveling system.
+ *
+ * E Stow_probe Stow the probe after each sampled point.
+ *
+ * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
+ * specified height, no correction is applied and natural printer kenimatics take over. If no
+ * number is specified for the command, 10mm is assumed to be reasonable.
+ *
+ * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
+ *
+ * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
+ * default is 5mm.
+ *
+ * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
+ * the X and Y parameter are used. If no number is specified, only the closest Mesh
+ * point to the location is invalidated. The M parameter is available as well to produce
+ * a map after the operation. This command is useful to invalidate a portion of the
+ * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
+ * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
+ * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
+ * the bed and use this feature to select the center of the area (or cell) you want to
+ * invalidate.
+ *
+ * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
+ * command literally performs a diff between two Meshes.
+ *
+ * L Load * Load Mesh from the previously activated location in the EEPROM.
+ *
+ * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
+ * for subsequent Load and Store operations.
+ *
+ * O Map * Display the Mesh Map Topology.
+ * The parameter can be specified alone (ie. G29 O) or in combination with many of the
+ * other commands. The Mesh Map option works with all of the Phase
+ * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
+ * specified. A map type of 0 is the default is user readable. A map type of 1 can
+ * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
+ * mesh.
+ *
+ * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
+ * N option. In general, you should not do this. This can only be done safely with
+ * commands that do not move the nozzle.
+ *
+ * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
+ * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
+ * each additional Phase that processes it.
+ *
+ * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
+ * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
+ * was turned on. Setting the entire Mesh to Zero is a special case that allows
+ * a subsequent G or T leveling operation for backward compatibility.
+ *
+ * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
+ * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
+ * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
+ * generated. This will be handled in Phase 2. If the Phase 1 command is given the
+ * C (Continue) parameter it does not invalidate the Mesh prior to automatically
+ * probing needed locations. This allows you to invalidate portions of the Mesh but still
+ * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
+ * parameter can be given to prioritize where the command should be trying to measure points.
+ * If the X and Y parameters are not specified the current probe position is used. Phase 1
+ * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
+ * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
+ * It will suspend generation of the Mesh if it sees the user request that. (This check is
+ * only done between probe points. You will need to press and hold the switch until the
+ * Phase 1 command can detect it.)
+ *
+ * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
+ * parameter to control the height between Mesh points. The default height for movement
+ * between Mesh points is 5mm. A smaller number can be used to make this part of the
+ * calibration less time consuming. You will be running the nozzle down until it just barely
+ * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
+ * Use caution and move slowly. It is possible to damage your printer if you are careless.
+ * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
+ * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
+ *
+ * The H parameter can be set negative if your Mesh dips in a large area. You can press
+ * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
+ * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
+ * area you are manually probing. Note that the command tries to start you in a corner
+ * of the bed where movement will be predictable. You can force the location to be used in
+ * the distance calculations by using the X and Y parameters. You may find it is helpful to
+ * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
+ * the nozzle will need to move in order to complete the command. The C parameter is
+ * available on the Phase 2 command also and indicates the search for points to measure should
+ * be done based on the current location of the nozzle.
+ *
+ * A B parameter is also available for this command and described up above. It places the
+ * manual probe subsystem into Business Card mode where the thickness of a business care is
+ * measured and then used to accurately set the nozzle height in all manual probing for the
+ * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
+ * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
+ * better results if you use a flexible Shim that does not compress very much. That makes it
+ * easier for you to get the nozzle to press with similar amounts of force against the shim so you
+ * can get accurate measurements. As you are starting to touch the nozzle against the shim try
+ * to get it to grasp the shim with the same force as when you measured the thickness of the
+ * shim at the start of the command.
+ *
+ * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
+ * of the Mesh being built.
+ *
+ * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
+ * used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
+ * is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
+ * of points to set. If the R parameter is specified the current nozzle position is used to
+ * find the closest points to alter unless the X and Y parameter are used to specify the fill
+ * location.
+ *
+ * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
+ * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
+ * (More work and details on doing this later!)
+ * The System will search for the closest Mesh Point to the nozzle. It will move the
+ * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
+ * so it is just barely touching the bed. When the user clicks the control, the System
+ * will lock in that height for that point in the Mesh Compensation System.
+ *
+ * Phase 4 has several additional parameters that the user may find helpful. Phase 4
+ * can be started at a specific location by specifying an X and Y parameter. Phase 4
+ * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
+ * parameter. If the Repetition count is not specified, it is assumed the user wishes
+ * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
+ * The command can be terminated early (or after the area of interest has been edited) by
+ * pressing and holding the encoder wheel until the system recognizes the exit request.
+ * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
+ *
+ * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
+ * information left on the printer's bed from the G26 command it is very straight forward
+ * and easy to fine tune the Mesh. One concept that is important to remember and that
+ * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
+ * If you have too little clearance and not much plastic was extruded in an area, you want to
+ * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
+ * RAISE the Mesh Point at that location.
+ *
+ *
+ * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
+ * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
+ * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
+ * execute a G29 P6 C .
+ *
+ * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
+ * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
+ * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
+ * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
+ * 0.000 at the Z Home location.
+ *
+ * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
+ * command is not anticipated to be of much value to the typical user. It is intended
+ * for developers to help them verify correct operation of the Unified Bed Leveling System.
+ *
+ * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
+ * current state of the Unified Bed Leveling system in the EEPROM.
+ *
+ * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
+ * for subsequent Load and Store operations. It will also store the current state of
+ * the Unified Bed Leveling system in the EEPROM.
+ *
+ * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
+ * the system at a later date. The text generated can be saved and later sent by PronterFace or
+ * Repetier Host to reconstruct the current mesh on another machine.
+ *
+ * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
+ *
+ * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
+ * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
+ * is useful when the entire bed does not need to be probed because it will be adjusted.
+ *
+ * W What? Display valuable data the Unified Bed Leveling System knows.
+ *
+ * X # * * X Location for this line of commands
+ *
+ * Y # * * Y Location for this line of commands
+ *
+ * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
+ * by just doing a G29 Z
+ *
+ * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
+ * zprobe_zoffset is added to the calculation.
+ *
+ *
+ * Release Notes:
+ * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
+ * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
+ * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
+ * respectively.)
+ *
+ * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
+ * the Unified Bed Leveling probes points further and further away from the starting location. (The
+ * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
+ * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
+ * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
+ * perform a small print and check out your settings quicker. You do not need to populate the
+ * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
+ * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
+ * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
+ *
+ * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
+ * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
+ * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
+ * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
+ * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
+ * this is going to be helpful to the users!)
+ *
+ * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
+ * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
+ * we now have the functionality and features of all three systems combined.
+ */
+
+ // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
+ static int g29_verbose_level, phase_value = -1, repetition_cnt,
+ storage_slot = 0, map_type; //unlevel_value = -1;
+ static bool repeat_flag, c_flag, x_flag, y_flag;
+ static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
+
+ #if ENABLED(ULTRA_LCD)
+ extern void lcd_setstatus(const char* message, const bool persist);
+ extern void lcd_setstatuspgm(const char* message, const uint8_t level);
+ #endif
+
+ void gcode_G29() {
+ SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start);
+ if (ubl.eeprom_start < 0) {
+ SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
+ SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
+ return;
+ }
+
+ if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
+ gcode_G28();
+
+ if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
+
+ // Invalidate Mesh Points. This command is a little bit asymetrical because
+ // it directly specifies the repetition count and does not use the 'R' parameter.
+ if (code_seen('I')) {
+ repetition_cnt = code_has_value() ? code_value_int() : 1;
+ while (repetition_cnt--) {
+ const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
+ if (location.x_index < 0) {
+ SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
+ break; // No more invalid Mesh Points to populate
+ }
+ ubl.z_values[location.x_index][location.y_index] = NAN;
+ }
+ SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
+ }
+
+ if (code_seen('Q')) {
+
+ const int test_pattern = code_has_value() ? code_value_int() : -1;
+ if (!WITHIN(test_pattern, 0, 2)) {
+ SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
+ return;
+ }
+ SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
+ switch (test_pattern) {
+ case 0:
+ for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape - similar to
+ for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
+ const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
+ p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
+ ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
+ }
+ }
+ break;
+ case 1:
+ for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised
+ ubl.z_values[x][x] += 9.999;
+ ubl.z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
+ }
+ break;
+ case 2:
+ // Allow the user to specify the height because 10mm is a little extreme in some cases.
+ for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
+ for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
+ ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
+ break;
+ }
+ }
+
+ /*
+ if (code_seen('U')) {
+ unlevel_value = code_value_int();
+ //if (!WITHIN(unlevel_value, 0, 7)) {
+ // SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
+ // return;
+ //}
+ }
+ //*/
+
+ if (code_seen('P')) {
+ phase_value = code_value_int();
+ if (!WITHIN(phase_value, 0, 7)) {
+ SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
+ return;
+ }
+ switch (phase_value) {
+ case 0:
+ //
+ // Zero Mesh Data
+ //
+ ubl.reset();
+ SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
+ break;
+
+ case 1:
+ //
+ // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
+ //
+ if (!code_seen('C') ) {
+ ubl.invalidate();
+ SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
+ }
+ if (g29_verbose_level > 1) {
+ SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
+ SERIAL_ECHO(x_pos);
+ SERIAL_ECHOPAIR(",", y_pos);
+ SERIAL_PROTOCOLLNPGM(")\n");
+ }
+ probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
+ code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
+ break;
+
+ case 2: {
+ //
+ // Manually Probe Mesh in areas that can't be reached by the probe
+ //
+ SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
+ do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
+ if (!x_flag && !y_flag) { // use a good default location for the path
+ x_pos = X_MIN_POS;
+ y_pos = Y_MIN_POS;
+ if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
+ x_pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
+
+ if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
+ y_pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
+
+ } // For now, until that is decided, it can be forced with the X
+ // and Y parameters.
+ if (code_seen('C')) {
+ x_pos = current_position[X_AXIS];
+ y_pos = current_position[Y_AXIS];
+ }
+
+ const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
+
+ if (code_seen('B')) {
+ card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
+
+ if (fabs(card_thickness) > 1.5) {
+ SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
+ return;
+ }
+ }
+ manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
+
+ } break;
+
+ case 3: {
+ //
+ // Populate invalid Mesh areas with a constant
+ //
+ const float height = code_seen('C') ? ubl_constant : 0.0;
+ // If no repetition is specified, do the whole Mesh
+ if (!repeat_flag) repetition_cnt = 9999;
+ while (repetition_cnt--) {
+ const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
+ if (location.x_index < 0) break; // No more invalid Mesh Points to populate
+ ubl.z_values[location.x_index][location.y_index] = height;
+ }
+ } break;
+
+ case 4:
+ //
+ // Fine Tune (i.e., Edit) the Mesh
+ //
+ fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
+ break;
+ case 5:
+ find_mean_mesh_height();
+ break;
+ case 6:
+ shift_mesh_height();
+ break;
+
+ case 10:
+ // [DEBUG] Pay no attention to this stuff. It can be removed soon.
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ ubl.has_control_of_lcd_panel++;
+ while (!ubl_lcd_clicked()) {
+ safe_delay(250);
+ if (ubl.encoder_diff) {
+ SERIAL_ECHOLN((int)ubl.encoder_diff);
+ ubl.encoder_diff = 0;
+ }
+ }
+ SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
+ ubl.has_control_of_lcd_panel = false;
+ KEEPALIVE_STATE(IN_HANDLER);
+ break;
+
+ case 11:
+ // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ wait_for_user = true;
+ while (wait_for_user) {
+ safe_delay(250);
+ if (ubl.encoder_diff) {
+ SERIAL_ECHOLN((int)ubl.encoder_diff);
+ ubl.encoder_diff = 0;
+ }
+ }
+ SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
+ KEEPALIVE_STATE(IN_HANDLER);
+ break;
+ }
+ }
+
+ if (code_seen('T')) {
+ const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X),
+ lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X),
+ lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X),
+ ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y),
+ ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y),
+ ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y);
+
+ float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level),
+ z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level),
+ z3 = probe_pt(lx3, ly3, true /*Stow Flag*/, g29_verbose_level);
+
+ // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
+ // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
+
+ z1 -= ubl.get_z_correction(lx1, ly1);
+ z2 -= ubl.get_z_correction(lx2, ly2);
+ z3 -= ubl.get_z_correction(lx3, ly3);
+
+ do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
+ tilt_mesh_based_on_3pts(z1, z2, z3);
+ }
+
+ //
+ // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
+ // good to have the extra information. Soon... we prune this to just a few items
+ //
+ if (code_seen('W')) g29_what_command();
+
+ //
+ // When we are fully debugged, the EEPROM dump command will get deleted also. But
+ // right now, it is good to have the extra information. Soon... we prune this.
+ //
+ if (code_seen('J')) g29_eeprom_dump(); // EEPROM Dump
+
+ //
+ // When we are fully debugged, this may go away. But there are some valid
+ // use cases for the users. So we can wait and see what to do with it.
+ //
+
+ if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
+ g29_compare_current_mesh_to_stored_mesh();
+
+ //
+ // Load a Mesh from the EEPROM
+ //
+
+ if (code_seen('L')) { // Load Current Mesh Data
+ storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
+
+ const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
+
+ if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
+ SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+ return;
+ }
+ ubl.load_mesh(storage_slot);
+ ubl.state.eeprom_storage_slot = storage_slot;
+ if (storage_slot != ubl.state.eeprom_storage_slot)
+ ubl.store_state();
+ SERIAL_PROTOCOLLNPGM("Done.\n");
+ }
+
+ //
+ // Store a Mesh in the EEPROM
+ //
+
+ if (code_seen('S')) { // Store (or Save) Current Mesh Data
+ storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
+
+ if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
+ SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
+ for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+ for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+ if (!isnan(ubl.z_values[x][y])) {
+ SERIAL_ECHOPAIR("M421 I ", x);
+ SERIAL_ECHOPAIR(" J ", y);
+ SERIAL_ECHOPGM(" Z ");
+ SERIAL_ECHO_F(ubl.z_values[x][y], 6);
+ SERIAL_EOL;
+ }
+ return;
+ }
+
+ const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
+
+ if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
+ SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+ SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
+ goto LEAVE;
+ }
+ ubl.store_mesh(storage_slot);
+ ubl.state.eeprom_storage_slot = storage_slot;
+ //
+ // if (storage_slot != ubl.state.eeprom_storage_slot)
+ ubl.store_state(); // Always save an updated copy of the UBL State info
+
+ SERIAL_PROTOCOLLNPGM("Done.\n");
+ }
+
+ if (code_seen('O') || code_seen('M'))
+ ubl.display_map(code_has_value() ? code_value_int() : 0);
+
+ if (code_seen('Z')) {
+ if (code_has_value())
+ ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
+ else {
+ save_ubl_active_state_and_disable();
+ //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
+
+ ubl.has_control_of_lcd_panel++; // Grab the LCD Hardware
+ measured_z = 1.5;
+ do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
+ // The user is not going to be locking in a new Z-Offset very often so
+ // it won't be that painful to spin the Encoder Wheel for 1.5mm
+ lcd_implementation_clear();
+ lcd_z_offset_edit_setup(measured_z);
+
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+ do {
+ measured_z = lcd_z_offset_edit();
+ idle();
+ do_blocking_move_to_z(measured_z);
+ } while (!ubl_lcd_clicked());
+
+ ubl.has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
+ // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
+ // or here. So, until we are done looking for a long Encoder Wheel Press,
+ // we need to take control of the panel
+
+ KEEPALIVE_STATE(IN_HANDLER);
+
+ lcd_return_to_status();
+
+ const millis_t nxt = millis() + 1500UL;
+ while (ubl_lcd_clicked()) { // debounce and watch for abort
+ idle();
+ if (ELAPSED(millis(), nxt)) {
+ SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ lcd_setstatuspgm("Z-Offset Stopped");
+ restore_ubl_active_state_and_leave();
+ goto LEAVE;
+ }
+ }
+ ubl.has_control_of_lcd_panel = false;
+ safe_delay(20); // We don't want any switch noise.
+
+ ubl.state.z_offset = measured_z;
+
+ lcd_implementation_clear();
+ restore_ubl_active_state_and_leave();
+ }
+ }
+
+ LEAVE:
+
+ #if ENABLED(ULTRA_LCD)
+ lcd_reset_alert_level();
+ lcd_setstatuspgm("");
+ lcd_quick_feedback();
+ #endif
+
+ ubl.has_control_of_lcd_panel = false;
+ }
+
+ void find_mean_mesh_height() {
+ uint8_t x, y;
+ int n;
+ float sum, sum_of_diff_squared, sigma, difference, mean;
+
+ sum = sum_of_diff_squared = 0.0;
+ n = 0;
+ for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+ for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+ if (!isnan(ubl.z_values[x][y])) {
+ sum += ubl.z_values[x][y];
+ n++;
+ }
+
+ mean = sum / n;
+
+ //
+ // Now do the sumation of the squares of difference from mean
+ //
+ for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+ for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+ if (!isnan(ubl.z_values[x][y])) {
+ difference = (ubl.z_values[x][y] - mean);
+ sum_of_diff_squared += difference * difference;
+ }
+
+ SERIAL_ECHOLNPAIR("# of samples: ", n);
+ SERIAL_ECHOPGM("Mean Mesh Height: ");
+ SERIAL_ECHO_F(mean, 6);
+ SERIAL_EOL;
+
+ sigma = sqrt(sum_of_diff_squared / (n + 1));
+ SERIAL_ECHOPGM("Standard Deviation: ");
+ SERIAL_ECHO_F(sigma, 6);
+ SERIAL_EOL;
+
+ if (c_flag)
+ for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+ for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+ if (!isnan(ubl.z_values[x][y]))
+ ubl.z_values[x][y] -= mean + ubl_constant;
+ }
+
+ void shift_mesh_height() {
+ for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+ for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+ if (!isnan(ubl.z_values[x][y]))
+ ubl.z_values[x][y] += ubl_constant;
+ }
+
+ /**
+ * Probe all invalidated locations of the mesh that can be reached by the probe.
+ * This attempts to fill in locations closest to the nozzle's start location first.
+ */
+ void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
+ mesh_index_pair location;
+
+ ubl.has_control_of_lcd_panel++;
+ save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
+ DEPLOY_PROBE();
+
+ do {
+ if (ubl_lcd_clicked()) {
+ SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
+ lcd_quick_feedback();
+ STOW_PROBE();
+ while (ubl_lcd_clicked()) idle();
+ ubl.has_control_of_lcd_panel = false;
+ restore_ubl_active_state_and_leave();
+ safe_delay(50); // Debounce the Encoder wheel
+ return;
+ }
+
+ location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
+ if (location.x_index >= 0 && location.y_index >= 0) {
+
+ const float rawx = ubl.mesh_index_to_xpos[location.x_index],
+ rawy = ubl.mesh_index_to_ypos[location.y_index];
+
+ // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
+ if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
+ ubl.has_control_of_lcd_panel = false;
+ goto LEAVE;
+ }
+ const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
+ ubl.z_values[location.x_index][location.y_index] = measured_z;
+ }
+
+ if (do_ubl_mesh_map) ubl.display_map(map_type);
+
+ } while (location.x_index >= 0 && location.y_index >= 0);
+
+ LEAVE:
+
+ STOW_PROBE();
+ restore_ubl_active_state_and_leave();
+
+ do_blocking_move_to_xy(
+ constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
+ constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
+ );
+ }
+
+ vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
+ float c, d, t;
+ int i, j;
+
+ vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
+ (ubl_3_point_1_Y - ubl_3_point_2_Y),
+ (z1 - z2) ),
+
+ v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
+ (ubl_3_point_3_Y - ubl_3_point_2_Y),
+ (z3 - z2) ),
+
+ normal = vector_3::cross(v1, v2);
+
+ // printf("[%f,%f,%f] ", normal.x, normal.y, normal.z);
+
+ /**
+ * This code does two things. This vector is normal to the tilted plane.
+ * However, we don't know its direction. We need it to point up. So if
+ * Z is negative, we need to invert the sign of all components of the vector
+ * We also need Z to be unity because we are going to be treating this triangle
+ * as the sin() and cos() of the bed's tilt
+ */
+ const float inv_z = 1.0 / normal.z;
+ normal.x *= inv_z;
+ normal.y *= inv_z;
+ normal.z = 1.0;
+
+ //
+ // All of 3 of these points should give us the same d constant
+ //
+ t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
+ d = t + normal.z * z1;
+ c = d - t;
+ SERIAL_ECHOPGM("d from 1st point: ");
+ SERIAL_ECHO_F(d, 6);
+ SERIAL_ECHOPGM(" c: ");
+ SERIAL_ECHO_F(c, 6);
+ SERIAL_EOL;
+ t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
+ d = t + normal.z * z2;
+ c = d - t;
+ SERIAL_ECHOPGM("d from 2nd point: ");
+ SERIAL_ECHO_F(d, 6);
+ SERIAL_ECHOPGM(" c: ");
+ SERIAL_ECHO_F(c, 6);
+ SERIAL_EOL;
+ t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
+ d = t + normal.z * z3;
+ c = d - t;
+ SERIAL_ECHOPGM("d from 3rd point: ");
+ SERIAL_ECHO_F(d, 6);
+ SERIAL_ECHOPGM(" c: ");
+ SERIAL_ECHO_F(c, 6);
+ SERIAL_EOL;
+
+ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+ c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
+ ubl.z_values[i][j] += c;
+ }
+ }
+ return normal;
+ }
+
+ float use_encoder_wheel_to_measure_point() {
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
+ idle();
+ if (ubl.encoder_diff) {
+ do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
+ ubl.encoder_diff = 0;
+ }
+ }
+ KEEPALIVE_STATE(IN_HANDLER);
+ return current_position[Z_AXIS];
+ }
+
+ float measure_business_card_thickness(const float &in_height) {
+
+ ubl.has_control_of_lcd_panel++;
+ save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
+
+ SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
+ do_blocking_move_to_z(in_height);
+ do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
+ //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
+
+ const float z1 = use_encoder_wheel_to_measure_point();
+ do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+ ubl.has_control_of_lcd_panel = false;
+
+ SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
+ const float z2 = use_encoder_wheel_to_measure_point();
+ do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+
+ if (g29_verbose_level > 1) {
+ SERIAL_PROTOCOLPGM("Business Card is: ");
+ SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
+ SERIAL_PROTOCOLLNPGM("mm thick.");
+ }
+ restore_ubl_active_state_and_leave();
+ return abs(z1 - z2);
+ }
+
+ void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
+
+ ubl.has_control_of_lcd_panel++;
+ save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
+ do_blocking_move_to_z(z_clearance);
+ do_blocking_move_to_xy(lx, ly);
+
+ float last_x = -9999.99, last_y = -9999.99;
+ mesh_index_pair location;
+ do {
+ if (do_ubl_mesh_map) ubl.display_map(map_type);
+
+ location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
+ // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
+ if (location.x_index < 0 && location.y_index < 0) continue;
+
+ const float rawx = ubl.mesh_index_to_xpos[location.x_index],
+ rawy = ubl.mesh_index_to_ypos[location.y_index];
+
+ // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
+ if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
+ ubl.has_control_of_lcd_panel = false;
+ goto LEAVE;
+ }
+
+ const float xProbe = LOGICAL_X_POSITION(rawx),
+ yProbe = LOGICAL_Y_POSITION(rawy),
+ dx = xProbe - last_x,
+ dy = yProbe - last_y;
+
+ if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
+ do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+ else
+ do_blocking_move_to_z(z_clearance);
+
+ do_blocking_move_to_xy(xProbe, yProbe);
+
+ last_x = xProbe;
+ last_y = yProbe;
+
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ ubl.has_control_of_lcd_panel = true;
+
+ while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
+ idle();
+ if (ubl.encoder_diff) {
+ do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
+ ubl.encoder_diff = 0;
+ }
+ }
+
+ const millis_t nxt = millis() + 1500L;
+ while (ubl_lcd_clicked()) { // debounce and watch for abort
+ idle();
+ if (ELAPSED(millis(), nxt)) {
+ SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ lcd_quick_feedback();
+ while (ubl_lcd_clicked()) idle();
+ ubl.has_control_of_lcd_panel = false;
+ KEEPALIVE_STATE(IN_HANDLER);
+ restore_ubl_active_state_and_leave();
+ return;
+ }
+ }
+
+ ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
+ if (g29_verbose_level > 2) {
+ SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
+ SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
+ SERIAL_EOL;
+ }
+ } while (location.x_index >= 0 && location.y_index >= 0);
+
+ if (do_ubl_mesh_map) ubl.display_map(map_type);
+
+ LEAVE:
+ restore_ubl_active_state_and_leave();
+ KEEPALIVE_STATE(IN_HANDLER);
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ do_blocking_move_to_xy(lx, ly);
+ }
+
+ bool g29_parameter_parsing() {
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatuspgm("Doing G29 UBL!");
+ lcd_quick_feedback();
+ #endif
+
+ g29_verbose_level = code_seen('V') ? code_value_int() : 0;
+ if (!WITHIN(g29_verbose_level, 0, 4)) {
+ SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
+ return UBL_ERR;
+ }
+
+ x_flag = code_seen('X') && code_has_value();
+ x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
+ if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
+ SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
+ return UBL_ERR;
+ }
+
+ y_flag = code_seen('Y') && code_has_value();
+ y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
+ if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
+ SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
+ return UBL_ERR;
+ }
+
+ if (x_flag != y_flag) {
+ SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
+ return UBL_ERR;
+ }
+
+ if (code_seen('A')) { // Activate the Unified Bed Leveling System
+ ubl.state.active = 1;
+ SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
+ ubl.store_state();
+ }
+
+ c_flag = code_seen('C') && code_has_value();
+ ubl_constant = c_flag ? code_value_float() : 0.0;
+
+ if (code_seen('D')) { // Disable the Unified Bed Leveling System
+ ubl.state.active = 0;
+ SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
+ ubl.store_state();
+ }
+
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ if (code_seen('F') && code_has_value()) {
+ const float fh = code_value_float();
+ if (!WITHIN(fh, 0.0, 100.0)) {
+ SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
+ return UBL_ERR;
+ }
+ ubl.state.g29_correction_fade_height = fh;
+ ubl.state.g29_fade_height_multiplier = 1.0 / fh;
+ }
+ #endif
+
+ repeat_flag = code_seen('R');
+ repetition_cnt = repeat_flag ? (code_has_value() ? code_value_int() : 9999) : 1;
+ if (repetition_cnt < 1) {
+ SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
+ return UBL_ERR;
+ }
+
+ map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
+ if (!WITHIN(map_type, 0, 1)) {
+ SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
+ return UBL_ERR;
+ }
+
+ /*
+ if (code_seen('M')) { // Check if a map type was specified
+ map_type = code_has_value() ? code_value_int() : 0;
+ if (!WITHIN(map_type, 0, 1)) {
+ SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
+ return UBL_ERR;
+ }
+ }
+ //*/
+
+ return UBL_OK;
+ }
+
+ /**
+ * This function goes away after G29 debug is complete. But for right now, it is a handy
+ * routine to dump binary data structures.
+ */
+ void dump(char * const str, const float &f) {
+ char *ptr;
+
+ SERIAL_PROTOCOL(str);
+ SERIAL_PROTOCOL_F(f, 8);
+ SERIAL_PROTOCOLPGM(" ");
+ ptr = (char*)&f;
+ for (uint8_t i = 0; i < 4; i++)
+ SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
+ SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
+ SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
+
+ if (f == -INFINITY)
+ SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
+
+ SERIAL_EOL;
+ }
+
+ static int ubl_state_at_invocation = 0,
+ ubl_state_recursion_chk = 0;
+
+ void save_ubl_active_state_and_disable() {
+ ubl_state_recursion_chk++;
+ if (ubl_state_recursion_chk != 1) {
+ SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
+ lcd_setstatuspgm("save_UBL_active() error");
+ lcd_quick_feedback();
+ return;
+ }
+ ubl_state_at_invocation = ubl.state.active;
+ ubl.state.active = 0;
+ }
+
+ void restore_ubl_active_state_and_leave() {
+ if (--ubl_state_recursion_chk) {
+ SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
+ lcd_setstatuspgm("restore_UBL_active() error");
+ lcd_quick_feedback();
+ return;
+ }
+ ubl.state.active = ubl_state_at_invocation;
+ }
+
+
+ /**
+ * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
+ * good to have the extra information. Soon... we prune this to just a few items
+ */
+ void g29_what_command() {
+ const uint16_t k = E2END - ubl.eeprom_start;
+
+ SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " ");
+ if (ubl.state.active)
+ SERIAL_PROTOCOLCHAR('A');
+ else
+ SERIAL_PROTOCOLPGM("In");
+ SERIAL_PROTOCOLLNPGM("ctive.\n");
+ safe_delay(50);
+
+ if (ubl.state.eeprom_storage_slot == -1)
+ SERIAL_PROTOCOLPGM("No Mesh Loaded.");
+ else {
+ SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
+ SERIAL_PROTOCOLPGM(" Loaded.");
+ }
+ SERIAL_EOL;
+ safe_delay(50);
+
+ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+ SERIAL_PROTOCOLLNPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height);
+ #endif
+
+ SERIAL_PROTOCOLPGM("z_offset: ");
+ SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
+ SERIAL_EOL;
+ safe_delay(50);
+
+ SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
+ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
+ SERIAL_PROTOCOLPGM(" ");
+ safe_delay(50);
+ }
+ SERIAL_EOL;
+
+ SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
+ for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
+ SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
+ SERIAL_PROTOCOLPGM(" ");
+ safe_delay(50);
+ }
+ SERIAL_EOL;
+
+ #if HAS_KILL
+ SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
+ SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
+ #endif
+ SERIAL_EOL;
+ safe_delay(50);
+
+ SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
+ SERIAL_EOL;
+ SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
+ SERIAL_EOL;
+ safe_delay(50);
+ SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start));
+
+ SERIAL_PROTOCOLLNPAIR("end of EEPROM : 0x", hex_word(E2END));
+ safe_delay(50);
+
+ SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
+ SERIAL_EOL;
+ SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
+ SERIAL_EOL;
+ safe_delay(50);
+
+ SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
+ safe_delay(50);
+
+ SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
+ SERIAL_PROTOCOLLNPGM(" meshes.\n");
+ safe_delay(50);
+
+ SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
+
+ SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
+ SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
+ safe_delay(50);
+ SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
+ SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
+ safe_delay(50);
+ SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
+ SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
+ safe_delay(50);
+ SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
+ SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
+ SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
+ SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
+ SERIAL_EOL;
+ safe_delay(50);
+
+ if (!ubl.sanity_check())
+ SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
+ }
+
+ /**
+ * When we are fully debugged, the EEPROM dump command will get deleted also. But
+ * right now, it is good to have the extra information. Soon... we prune this.
+ */
+ void g29_eeprom_dump() {
+ unsigned char cccc;
+ uint16_t kkkk;
+
+ SERIAL_ECHO_START;
+ SERIAL_ECHOLNPGM("EEPROM Dump:");
+ for (uint16_t i = 0; i < E2END + 1; i += 16) {
+ if (!(i & 0x3)) idle();
+ print_hex_word(i);
+ SERIAL_ECHOPGM(": ");
+ for (uint16_t j = 0; j < 16; j++) {
+ kkkk = i + j;
+ eeprom_read_block(&cccc, (void *)kkkk, 1);
+ print_hex_byte(cccc);
+ SERIAL_ECHO(' ');
+ }
+ SERIAL_EOL;
+ }
+ SERIAL_EOL;
+ }
+
+ /**
+ * When we are fully debugged, this may go away. But there are some valid
+ * use cases for the users. So we can wait and see what to do with it.
+ */
+ void g29_compare_current_mesh_to_stored_mesh() {
+ float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
+
+ if (!code_has_value()) {
+ SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
+ return;
+ }
+ storage_slot = code_value_int();
+
+ int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
+
+ if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
+ SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+ return;
+ }
+
+ j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
+ eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
+
+ SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
+ SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing
+ // the address in the EEPROM where the Mesh is stored.
+
+ for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+ for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+ ubl.z_values[x][y] -= tmp_z_values[x][y];
+ }
+
+ mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
+ float distance, closest = far_flag ? -99999.99 : 99999.99;
+ mesh_index_pair return_val;
+
+ return_val.x_index = return_val.y_index = -1;
+
+ const float current_x = current_position[X_AXIS],
+ current_y = current_position[Y_AXIS];
+
+ // Get our reference position. Either the nozzle or probe location.
+ const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
+ py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
+
+ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+ for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+
+ if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
+ || (type == REAL && !isnan(ubl.z_values[i][j]))
+ || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
+ ) {
+
+ // We only get here if we found a Mesh Point of the specified type
+
+ const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
+ rawy = ubl.mesh_index_to_ypos[j];
+
+ // If using the probe as the reference there are some unreachable locations.
+ // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
+
+ if (probe_as_reference &&
+ (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
+ ) continue;
+
+ // Unreachable. Check if it's the closest location to the nozzle.
+ // Add in a weighting factor that considers the current location of the nozzle.
+
+ const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
+ my = LOGICAL_Y_POSITION(rawy);
+
+ distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
+
+ if (far_flag) { // If doing the far_flag action, we want to be as far as possible
+ for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
+ for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
+ if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
+ distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
+ + sq(j - l) * (MESH_Y_DIST) * .05;
+ }
+ }
+ }
+ }
+
+ if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
+ closest = distance; // We found a closer/farther location with
+ return_val.x_index = i; // the specified type of mesh value.
+ return_val.y_index = j;
+ return_val.distance = closest;
+ }
+ }
+ } // for j
+ } // for i
+
+ return return_val;
+ }
+
+ void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
+ mesh_index_pair location;
+ uint16_t not_done[16];
+ int32_t round_off;
+
+ save_ubl_active_state_and_disable();
+ memset(not_done, 0xFF, sizeof(not_done));
+
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatuspgm("Fine Tuning Mesh");
+ #endif
+
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ do_blocking_move_to_xy(lx, ly);
+ do {
+ if (do_ubl_mesh_map) ubl.display_map(map_type);
+
+ location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx, ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
+ // It doesn't matter if the probe can not reach this
+ // location. This is a manual edit of the Mesh Point.
+ if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
+
+ bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
+ // different location the next time through the loop
+
+ const float rawx = ubl.mesh_index_to_xpos[location.x_index],
+ rawy = ubl.mesh_index_to_ypos[location.y_index];
+
+ // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
+ if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
+ ubl.has_control_of_lcd_panel = false;
+ goto FINE_TUNE_EXIT;
+ }
+
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
+ do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
+
+ float new_z = ubl.z_values[location.x_index][location.y_index];
+
+ round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
+ new_z = float(round_off) / 1000.0;
+
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
+ ubl.has_control_of_lcd_panel = true;
+
+ lcd_implementation_clear();
+ lcd_mesh_edit_setup(new_z);
+
+ do {
+ new_z = lcd_mesh_edit();
+ idle();
+ } while (!ubl_lcd_clicked());
+
+ lcd_return_to_status();
+
+ ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
+ // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
+ // or here.
+
+ const millis_t nxt = millis() + 1500UL;
+ while (ubl_lcd_clicked()) { // debounce and watch for abort
+ idle();
+ if (ELAPSED(millis(), nxt)) {
+ lcd_return_to_status();
+ //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+ lcd_setstatuspgm("Mesh Editing Stopped");
+
+ while (ubl_lcd_clicked()) idle();
+
+ goto FINE_TUNE_EXIT;
+ }
+ }
+
+ safe_delay(20); // We don't want any switch noise.
+
+ ubl.z_values[location.x_index][location.y_index] = new_z;
+
+ lcd_implementation_clear();
+
+ } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt);
+
+ FINE_TUNE_EXIT:
+
+ ubl.has_control_of_lcd_panel = false;
+ KEEPALIVE_STATE(IN_HANDLER);
+
+ if (do_ubl_mesh_map) ubl.display_map(map_type);
+ restore_ubl_active_state_and_leave();
+ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+
+ do_blocking_move_to_xy(lx, ly);
+
+ #if ENABLED(ULTRA_LCD)
+ lcd_setstatuspgm("Done Editing Mesh");
+ #endif
+ SERIAL_ECHOLNPGM("Done Editing Mesh");
+ }
+
#endif // AUTO_BED_LEVELING_UBL
\ No newline at end of file
diff --git a/Marlin/temperature.cpp b/Marlin/temperature.cpp
index f3bfc7fa7..5a37c7750 100644
--- a/Marlin/temperature.cpp
+++ b/Marlin/temperature.cpp
@@ -104,12 +104,12 @@ uint8_t Temperature::soft_pwm_bed;
volatile int Temperature::babystepsTodo[XYZ] = { 0 };
#endif
-#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+#if WATCH_HOTENDS
int Temperature::watch_target_temp[HOTENDS] = { 0 };
millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
#endif
-#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+#if WATCH_THE_BED
int Temperature::watch_target_bed_temp = 0;
millis_t Temperature::watch_bed_next_ms = 0;
#endif
@@ -690,7 +690,7 @@ void Temperature::manage_heater() {
if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0);
#endif
- #if (ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0) || (ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0) || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
+ #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
millis_t ms = millis();
#endif
@@ -707,7 +707,7 @@ void Temperature::manage_heater() {
soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
// Check if the temperature is failing to increase
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+ #if WATCH_HOTENDS
// Is it time to check this extruder's heater?
if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
@@ -725,7 +725,7 @@ void Temperature::manage_heater() {
#endif // THERMAL_PROTECTION_HOTENDS
// Check if the temperature is failing to increase
- #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+ #if WATCH_THE_BED
// Is it time to check the bed?
if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
@@ -1157,7 +1157,7 @@ void Temperature::init() {
#endif //BED_MAXTEMP
}
-#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+#if WATCH_HOTENDS
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
@@ -1176,7 +1176,7 @@ void Temperature::init() {
}
#endif
-#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+#if WATCH_THE_BED
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
diff --git a/Marlin/temperature.h b/Marlin/temperature.h
index d6451554f..09cf44bd2 100644
--- a/Marlin/temperature.h
+++ b/Marlin/temperature.h
@@ -113,12 +113,12 @@ class Temperature {
static volatile int babystepsTodo[3];
#endif
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+ #if WATCH_HOTENDS
static int watch_target_temp[HOTENDS];
static millis_t watch_heater_next_ms[HOTENDS];
#endif
- #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+ #if WATCH_THE_BED
static int watch_target_bed_temp;
static millis_t watch_bed_next_ms;
#endif
@@ -306,11 +306,11 @@ class Temperature {
}
static float degTargetBed() { return target_temperature_bed; }
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+ #if WATCH_HOTENDS
static void start_watching_heater(uint8_t e = 0);
#endif
- #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+ #if WATCH_THE_BED
static void start_watching_bed();
#endif
@@ -325,14 +325,14 @@ class Temperature {
start_preheat_time(HOTEND_INDEX);
#endif
target_temperature[HOTEND_INDEX] = celsius;
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+ #if WATCH_HOTENDS
start_watching_heater(HOTEND_INDEX);
#endif
}
static void setTargetBed(const float& celsius) {
target_temperature_bed = celsius;
- #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+ #if WATCH_THE_BED
start_watching_bed();
#endif
}
diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp
index 1065d6aa9..3988facf2 100755
--- a/Marlin/ultralcd.cpp
+++ b/Marlin/ultralcd.cpp
@@ -918,7 +918,7 @@ void kill_screen(const char* lcd_msg) {
/**
* Watch temperature callbacks
*/
- #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+ #if WATCH_HOTENDS
#if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0() { thermalManager.start_watching_heater(0); }
#endif
@@ -946,14 +946,8 @@ void kill_screen(const char* lcd_msg) {
#endif // HOTENDS > 3
#endif
- #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
- #if TEMP_SENSOR_BED != 0
- void watch_temp_callback_bed() { thermalManager.start_watching_bed(); }
- #endif
- #else
- #if TEMP_SENSOR_BED != 0
- void watch_temp_callback_bed() {}
- #endif
+ #if WATCH_THE_BED
+ void watch_temp_callback_bed() { thermalManager.start_watching_bed(); }
#endif
#if ENABLED(FILAMENT_CHANGE_FEATURE)
@@ -1021,7 +1015,7 @@ void kill_screen(const char* lcd_msg) {
//
// Bed:
//
- #if TEMP_SENSOR_BED != 0
+ #if WATCH_THE_BED
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
#endif
@@ -2180,7 +2174,7 @@ void kill_screen(const char* lcd_msg) {
//
// Bed:
//
- #if TEMP_SENSOR_BED != 0
+ #if WATCH_THE_BED
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
#endif