Basic UBL operations working on 32-bit platforms (#8024)
* 32-bit work for UBL * Update FT i3-2020 reference file
This commit is contained in:
parent
348e5e3109
commit
5439358281
@ -21,7 +21,7 @@ FIL eeprom_file;
|
||||
bool access_start() {
|
||||
UINT file_size = 0,
|
||||
bytes_written = 0;
|
||||
const char eeprom_zero = 0xFF;
|
||||
const char eeprom_erase_value = 0xFF;
|
||||
MSC_Aquire_Lock();
|
||||
if (f_mount(&fat_fs, "", 1)) {
|
||||
MSC_Release_Lock();
|
||||
@ -35,7 +35,7 @@ bool access_start() {
|
||||
if (res == FR_OK) {
|
||||
f_lseek(&eeprom_file, file_size);
|
||||
while (file_size <= E2END && res == FR_OK) {
|
||||
res = f_write(&eeprom_file, &eeprom_zero, 1, &bytes_written);
|
||||
res = f_write(&eeprom_file, &eeprom_erase_value, 1, &bytes_written);
|
||||
file_size++;
|
||||
}
|
||||
}
|
||||
|
@ -125,7 +125,7 @@
|
||||
|
||||
// Optional custom name for your RepStrap or other custom machine
|
||||
// Displayed in the LCD "Ready" message
|
||||
#define CUSTOM_MACHINE_NAME "FT-2020 v3"
|
||||
#define CUSTOM_MACHINE_NAME "FT-2020 v4"
|
||||
|
||||
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
|
||||
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
|
||||
@ -1677,7 +1677,7 @@
|
||||
// Servo deactivation
|
||||
//
|
||||
// With this option servos are powered only during movement, then turned off to prevent jitter.
|
||||
#define DEACTIVATE_SERVOS_AFTER_MOVE
|
||||
//#define DEACTIVATE_SERVOS_AFTER_MOVE
|
||||
|
||||
/**
|
||||
* Filament Width Sensor
|
||||
|
@ -1338,7 +1338,7 @@
|
||||
* For clients that use a fixed-width font (like OctoPrint), leave this set to 1.0.
|
||||
* Otherwise, adjust according to your client and font.
|
||||
*/
|
||||
#define PROPORTIONAL_FONT_RATIO 1.5
|
||||
#define PROPORTIONAL_FONT_RATIO 2.2
|
||||
|
||||
/**
|
||||
* Spend 28 bytes of SRAM to optimize the GCode parser
|
||||
|
@ -143,7 +143,7 @@
|
||||
// Private functions
|
||||
|
||||
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
|
||||
float g26_e_axis_feedrate = 0.020,
|
||||
float g26_e_axis_feedrate = 0.025,
|
||||
random_deviation = 0.0;
|
||||
|
||||
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
|
||||
|
@ -141,7 +141,8 @@ class unified_bed_leveling {
|
||||
static void save_ubl_active_state_and_disable();
|
||||
static void restore_ubl_active_state_and_leave();
|
||||
static void display_map(const int);
|
||||
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16], bool);
|
||||
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]);
|
||||
static mesh_index_pair find_furthest_invalid_mesh_point();
|
||||
static void reset();
|
||||
static void invalidate();
|
||||
static void set_all_mesh_points_to_value(const float);
|
||||
|
@ -333,7 +333,7 @@
|
||||
else {
|
||||
while (g29_repetition_cnt--) {
|
||||
if (cnt > 20) { cnt = 0; idle(); }
|
||||
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
|
||||
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
|
||||
if (location.x_index < 0) {
|
||||
// No more REACHABLE mesh points to invalidate, so we ASSUME the user
|
||||
// meant to invalidate the ENTIRE mesh, which cannot be done with
|
||||
@ -529,7 +529,7 @@
|
||||
}
|
||||
else {
|
||||
while (g29_repetition_cnt--) { // this only populates reachable mesh points near
|
||||
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
|
||||
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
|
||||
if (location.x_index < 0) {
|
||||
// No more REACHABLE INVALID mesh points to populate, so we ASSUME
|
||||
// user meant to populate ALL INVALID mesh points to value
|
||||
@ -744,6 +744,8 @@
|
||||
uint16_t max_iterations = GRID_MAX_POINTS;
|
||||
|
||||
do {
|
||||
if (do_ubl_mesh_map) display_map(g29_map_type);
|
||||
|
||||
#if ENABLED(NEWPANEL)
|
||||
if (ubl_lcd_clicked()) {
|
||||
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
|
||||
@ -757,7 +759,10 @@
|
||||
}
|
||||
#endif
|
||||
|
||||
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far);
|
||||
if (close_or_far)
|
||||
location = find_furthest_invalid_mesh_point();
|
||||
else
|
||||
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL);
|
||||
|
||||
if (location.x_index >= 0) { // mesh point found and is reachable by probe
|
||||
const float rawx = mesh_index_to_xpos(location.x_index),
|
||||
@ -767,8 +772,6 @@
|
||||
z_values[location.x_index][location.y_index] = measured_z;
|
||||
}
|
||||
|
||||
if (do_ubl_mesh_map) display_map(g29_map_type);
|
||||
|
||||
} while (location.x_index >= 0 && --max_iterations);
|
||||
|
||||
STOW_PROBE();
|
||||
@ -962,7 +965,7 @@
|
||||
|
||||
mesh_index_pair location;
|
||||
do {
|
||||
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
|
||||
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL);
|
||||
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
|
||||
if (location.x_index < 0 && location.y_index < 0) continue;
|
||||
|
||||
@ -1289,7 +1292,7 @@
|
||||
*/
|
||||
void unified_bed_leveling::g29_eeprom_dump() {
|
||||
unsigned char cccc;
|
||||
uint16_t kkkk;
|
||||
unsigned int kkkk; // Needs to be of unspecfied size to compile clean on all platforms
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM("EEPROM Dump:");
|
||||
@ -1299,7 +1302,7 @@
|
||||
SERIAL_ECHOPGM(": ");
|
||||
for (uint16_t j = 0; j < 16; j++) {
|
||||
kkkk = i + j;
|
||||
eeprom_read_block(&cccc, (void *)kkkk, 1);
|
||||
eeprom_read_block(&cccc, (const void *) kkkk, sizeof(unsigned char));
|
||||
print_hex_byte(cccc);
|
||||
SERIAL_ECHO(' ');
|
||||
}
|
||||
@ -1345,18 +1348,84 @@
|
||||
z_values[x][y] -= tmp_z_values[x][y];
|
||||
}
|
||||
|
||||
mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, uint16_t bits[16], const bool far_flag) {
|
||||
|
||||
mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
|
||||
|
||||
bool found_a_NAN = false;
|
||||
bool found_a_real = false;
|
||||
mesh_index_pair out_mesh;
|
||||
out_mesh.x_index = out_mesh.y_index = -1;
|
||||
out_mesh.distance = -99999.99;
|
||||
|
||||
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
||||
for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
||||
|
||||
if ( isnan(z_values[i][j])) { // Check to see if this location holds an invalid mesh point
|
||||
|
||||
const float mx = mesh_index_to_xpos(i),
|
||||
my = mesh_index_to_ypos(j);
|
||||
|
||||
if ( !position_is_reachable_by_probe_raw_xy(mx, my)) // make sure the probe can get to the mesh point
|
||||
continue;
|
||||
|
||||
found_a_NAN = true;
|
||||
|
||||
int8_t closest_x=-1, closest_y=-1;
|
||||
float d1, d2 = 99999.9;
|
||||
for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
|
||||
for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
|
||||
if (!isnan(z_values[k][l])) {
|
||||
found_a_real = true;
|
||||
|
||||
// Add in a random weighting factor that scrambles the probing of the
|
||||
// last half of the mesh (when every unprobed mesh point is one index
|
||||
// from a probed location).
|
||||
|
||||
d1 = HYPOT(i - k, j - l) + (1.0 / ((millis() % 47) + 13));
|
||||
|
||||
if (d1 < d2) { // found a closer distance from invalid mesh point at (i,j) to defined mesh point at (k,l)
|
||||
d2 = d1; // found a closer location with
|
||||
closest_x = i; // an assigned mesh point value
|
||||
closest_y = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// at this point d2 should have the closest defined mesh point to invalid mesh point (i,j)
|
||||
//
|
||||
|
||||
if (found_a_real && (closest_x >= 0) && (d2 > out_mesh.distance)) {
|
||||
out_mesh.distance = d2; // found an invalid location with a greater distance
|
||||
out_mesh.x_index = closest_x; // to a defined mesh point
|
||||
out_mesh.y_index = closest_y;
|
||||
}
|
||||
}
|
||||
} // for j
|
||||
} // for i
|
||||
|
||||
if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
|
||||
out_mesh.x_index = GRID_MAX_POINTS_X / 2;
|
||||
out_mesh.y_index = GRID_MAX_POINTS_Y / 2;
|
||||
out_mesh.distance = 1.0;
|
||||
}
|
||||
return out_mesh;
|
||||
}
|
||||
|
||||
mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, uint16_t bits[16]) {
|
||||
mesh_index_pair out_mesh;
|
||||
out_mesh.x_index = out_mesh.y_index = -1;
|
||||
out_mesh.distance = -99999.9;
|
||||
|
||||
// Get our reference position. Either the nozzle or probe location.
|
||||
const float px = RAW_X_POSITION(lx) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
|
||||
py = RAW_Y_POSITION(ly) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
|
||||
|
||||
float best_so_far = far_flag ? -99999.99 : 99999.99;
|
||||
float best_so_far = 99999.99;
|
||||
|
||||
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
||||
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
||||
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
||||
for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
||||
|
||||
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|
||||
|| (type == REAL && !isnan(z_values[i][j]))
|
||||
@ -1376,35 +1445,14 @@
|
||||
continue;
|
||||
|
||||
// Reachable. Check if it's the best_so_far location to the nozzle.
|
||||
// Add in a weighting factor that considers the current location of the nozzle.
|
||||
|
||||
float distance = HYPOT(px - mx, py - my);
|
||||
|
||||
/**
|
||||
* If doing the far_flag action, we want to be as far as possible
|
||||
* from the starting point and from any other probed points. We
|
||||
* want the next point spread out and filling in any blank spaces
|
||||
* in the mesh. So we add in some of the distance to every probed
|
||||
* point we can find.
|
||||
*/
|
||||
if (far_flag) {
|
||||
for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
|
||||
for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
|
||||
if (i != k && j != l && !isnan(z_values[k][l])) {
|
||||
//distance += pow((float) abs(i - k) * (MESH_X_DIST), 2) + pow((float) abs(j - l) * (MESH_Y_DIST), 2); // working here
|
||||
distance += HYPOT(MESH_X_DIST, MESH_Y_DIST) / log(HYPOT((i - k) * (MESH_X_DIST) + .001, (j - l) * (MESH_Y_DIST)) + .001);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
// factor in the distance from the current location for the normal case
|
||||
// so the nozzle isn't running all over the bed.
|
||||
distance += HYPOT(raw_x - mx, raw_y - my) * 0.1;
|
||||
|
||||
// if far_flag, look for farthest point
|
||||
if (far_flag == (distance > best_so_far) && distance != best_so_far) {
|
||||
best_so_far = distance; // We found a closer/farther location with
|
||||
if (distance < best_so_far) {
|
||||
best_so_far = distance; // We found a closer location with
|
||||
out_mesh.x_index = i; // the specified type of mesh value.
|
||||
out_mesh.y_index = j;
|
||||
out_mesh.distance = best_so_far;
|
||||
@ -1412,7 +1460,6 @@
|
||||
}
|
||||
} // for j
|
||||
} // for i
|
||||
|
||||
return out_mesh;
|
||||
}
|
||||
|
||||
@ -1448,7 +1495,7 @@
|
||||
uint16_t not_done[16];
|
||||
memset(not_done, 0xFF, sizeof(not_done));
|
||||
do {
|
||||
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
|
||||
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done);
|
||||
|
||||
if (location.x_index < 0) break; // stop when we can't find any more reachable points.
|
||||
|
||||
@ -1572,16 +1619,10 @@
|
||||
info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
|
||||
static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
|
||||
|
||||
// static const smart_fill_info info[] PROGMEM = {
|
||||
// { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false } PROGMEM, // Bottom of the mesh looking up
|
||||
// { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false } PROGMEM, // Top of the mesh looking down
|
||||
// { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true } PROGMEM, // Left side of the mesh looking right
|
||||
// { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } PROGMEM // Right side of the mesh looking left
|
||||
// };
|
||||
for (uint8_t i = 0; i < COUNT(info); ++i) {
|
||||
const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
|
||||
const int8_t sx = pgm_read_word(&f->sx), sy = pgm_read_word(&f->sy),
|
||||
ex = pgm_read_word(&f->ex), ey = pgm_read_word(&f->ey);
|
||||
const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
|
||||
ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
|
||||
if (pgm_read_byte(&f->yfirst)) {
|
||||
const int8_t dir = ex > sx ? 1 : -1;
|
||||
for (uint8_t y = sy; y != ey; ++y)
|
||||
|
@ -49,7 +49,7 @@ void GcodeSuite::M421() {
|
||||
hasQ = !hasZ && parser.seen('Q');
|
||||
|
||||
if (hasC) {
|
||||
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
|
||||
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
|
||||
ix = location.x_index;
|
||||
iy = location.y_index;
|
||||
}
|
||||
|
@ -137,13 +137,13 @@ void GcodeSuite::M48() {
|
||||
for (uint8_t n = 0; n < n_samples; n++) {
|
||||
if (n_legs) {
|
||||
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
||||
float angle = random(0.0, 360.0);
|
||||
float angle = random(0, 360);
|
||||
const float radius = random(
|
||||
#if ENABLED(DELTA)
|
||||
0.1250000000 * (DELTA_PROBEABLE_RADIUS),
|
||||
0.3333333333 * (DELTA_PROBEABLE_RADIUS)
|
||||
(int) (0.1250000000 * (DELTA_PROBEABLE_RADIUS)),
|
||||
(int) (0.3333333333 * (DELTA_PROBEABLE_RADIUS))
|
||||
#else
|
||||
5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
|
||||
(int) 5.0, (int) (0.125 * min(X_BED_SIZE, Y_BED_SIZE))
|
||||
#endif
|
||||
);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user