Temperature updates for parity with 1.1.x
This commit is contained in:
parent
39e5fabfa9
commit
5e01ee8adf
@ -244,11 +244,11 @@ uint8_t Temperature::soft_pwm_amount[HOTENDS],
|
||||
;
|
||||
const int8_t watch_temp_period =
|
||||
#if ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED) && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP)
|
||||
hotend < 0 ? THERMAL_PROTECTION_BED_PERIOD : THERMAL_PROTECTION_PERIOD
|
||||
hotend < 0 ? WATCH_BED_TEMP_PERIOD : WATCH_TEMP_PERIOD
|
||||
#elif ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED)
|
||||
THERMAL_PROTECTION_BED_PERIOD
|
||||
WATCH_BED_TEMP_PERIOD
|
||||
#else
|
||||
THERMAL_PROTECTION_PERIOD
|
||||
WATCH_TEMP_PERIOD
|
||||
#endif
|
||||
;
|
||||
const int8_t watch_temp_increase =
|
||||
@ -437,7 +437,9 @@ uint8_t Temperature::soft_pwm_amount[HOTENDS],
|
||||
next_watch_temp = input + watch_temp_increase;
|
||||
temp_change_ms = ms + watch_temp_period * 1000UL;
|
||||
}
|
||||
else if ((!heated && ELAPSED(ms, temp_change_ms)) || (heated && input < temp - MAX_OVERSHOOT_PID_AUTOTUNE))
|
||||
else if (!heated && ELAPSED(ms, temp_change_ms))
|
||||
_temp_error(hotend, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
|
||||
else if (heated && input < temp - MAX_OVERSHOOT_PID_AUTOTUNE)
|
||||
_temp_error(hotend, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
|
||||
#endif
|
||||
} // every 2 seconds
|
||||
@ -834,10 +836,8 @@ void Temperature::manage_heater() {
|
||||
#endif
|
||||
|
||||
#if HEATER_IDLE_HANDLER
|
||||
if (bed_idle_timeout_exceeded)
|
||||
{
|
||||
if (bed_idle_timeout_exceeded) {
|
||||
soft_pwm_amount_bed = 0;
|
||||
|
||||
#if DISABLED(PIDTEMPBED)
|
||||
WRITE_HEATER_BED(LOW);
|
||||
#endif
|
||||
@ -847,23 +847,17 @@ void Temperature::manage_heater() {
|
||||
{
|
||||
#if ENABLED(PIDTEMPBED)
|
||||
soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
|
||||
|
||||
#elif ENABLED(BED_LIMIT_SWITCHING)
|
||||
#else
|
||||
// Check if temperature is within the correct band
|
||||
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
|
||||
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
|
||||
soft_pwm_amount_bed = 0;
|
||||
else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
|
||||
soft_pwm_amount_bed = MAX_BED_POWER >> 1;
|
||||
}
|
||||
else {
|
||||
soft_pwm_amount_bed = 0;
|
||||
WRITE_HEATER_BED(LOW);
|
||||
}
|
||||
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
|
||||
// Check if temperature is within the correct range
|
||||
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
|
||||
soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
|
||||
#if ENABLED(BED_LIMIT_SWITCHING)
|
||||
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
|
||||
soft_pwm_amount_bed = 0;
|
||||
else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
|
||||
soft_pwm_amount_bed = MAX_BED_POWER >> 1;
|
||||
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
|
||||
soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
soft_pwm_amount_bed = 0;
|
||||
@ -878,7 +872,7 @@ void Temperature::manage_heater() {
|
||||
|
||||
// Derived from RepRap FiveD extruder::getTemperature()
|
||||
// For hot end temperature measurement.
|
||||
float Temperature::analog2temp(int raw, uint8_t e) {
|
||||
float Temperature::analog2temp(const int raw, const uint8_t e) {
|
||||
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
||||
if (e > HOTENDS)
|
||||
#else
|
||||
@ -919,39 +913,41 @@ float Temperature::analog2temp(int raw, uint8_t e) {
|
||||
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
|
||||
}
|
||||
|
||||
// Derived from RepRap FiveD extruder::getTemperature()
|
||||
// For bed temperature measurement.
|
||||
float Temperature::analog2tempBed(const int raw) {
|
||||
#if ENABLED(BED_USES_THERMISTOR)
|
||||
float celsius = 0;
|
||||
byte i;
|
||||
#if HAS_TEMP_BED
|
||||
// Derived from RepRap FiveD extruder::getTemperature()
|
||||
// For bed temperature measurement.
|
||||
float Temperature::analog2tempBed(const int raw) {
|
||||
#if ENABLED(BED_USES_THERMISTOR)
|
||||
float celsius = 0;
|
||||
byte i;
|
||||
|
||||
for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
|
||||
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
|
||||
celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
|
||||
(raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
|
||||
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
|
||||
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
|
||||
break;
|
||||
for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
|
||||
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
|
||||
celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
|
||||
(raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
|
||||
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
|
||||
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
|
||||
|
||||
return celsius;
|
||||
return celsius;
|
||||
|
||||
#elif defined(BED_USES_AD595)
|
||||
#elif defined(BED_USES_AD595)
|
||||
|
||||
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
|
||||
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
|
||||
|
||||
#else
|
||||
#else
|
||||
|
||||
UNUSED(raw);
|
||||
return 0;
|
||||
UNUSED(raw);
|
||||
return 0;
|
||||
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif // HAS_TEMP_BED
|
||||
|
||||
/**
|
||||
* Get the raw values into the actual temperatures.
|
||||
@ -1236,24 +1232,26 @@ void Temperature::init() {
|
||||
#endif // HOTENDS > 2
|
||||
#endif // HOTENDS > 1
|
||||
|
||||
#ifdef BED_MINTEMP
|
||||
while (analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
|
||||
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||||
bed_minttemp_raw += OVERSAMPLENR;
|
||||
#else
|
||||
bed_minttemp_raw -= OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif // BED_MINTEMP
|
||||
#ifdef BED_MAXTEMP
|
||||
while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
||||
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||||
bed_maxttemp_raw -= OVERSAMPLENR;
|
||||
#else
|
||||
bed_maxttemp_raw += OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif // BED_MAXTEMP
|
||||
#if HAS_TEMP_BED
|
||||
#ifdef BED_MINTEMP
|
||||
while (analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
|
||||
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||||
bed_minttemp_raw += OVERSAMPLENR;
|
||||
#else
|
||||
bed_minttemp_raw -= OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif // BED_MINTEMP
|
||||
#ifdef BED_MAXTEMP
|
||||
while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
||||
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||||
bed_maxttemp_raw -= OVERSAMPLENR;
|
||||
#else
|
||||
bed_maxttemp_raw += OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif // BED_MAXTEMP
|
||||
#endif // HAS_TEMP_BED
|
||||
|
||||
#if ENABLED(PROBING_HEATERS_OFF)
|
||||
paused = false;
|
||||
@ -1348,7 +1346,7 @@ void Temperature::init() {
|
||||
millis_t Temperature::thermal_runaway_bed_timer;
|
||||
#endif
|
||||
|
||||
void Temperature::thermal_runaway_protection(Temperature::TRState * const state, millis_t * const timer, const float current, const float target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
|
||||
void Temperature::thermal_runaway_protection(Temperature::TRState * const state, millis_t * const timer, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
|
||||
|
||||
static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
|
||||
|
||||
@ -1371,22 +1369,22 @@ void Temperature::init() {
|
||||
|
||||
#if HEATER_IDLE_HANDLER
|
||||
// If the heater idle timeout expires, restart
|
||||
if (heater_id >= 0 && heater_idle_timeout_exceeded[heater_id]) {
|
||||
if ((heater_id >= 0 && heater_idle_timeout_exceeded[heater_id])
|
||||
#if HAS_TEMP_BED
|
||||
|| (heater_id < 0 && bed_idle_timeout_exceeded)
|
||||
#endif
|
||||
) {
|
||||
*state = TRInactive;
|
||||
tr_target_temperature[heater_index] = 0;
|
||||
}
|
||||
#if HAS_TEMP_BED
|
||||
else if (heater_id < 0 && bed_idle_timeout_exceeded) {
|
||||
*state = TRInactive;
|
||||
tr_target_temperature[heater_index] = 0;
|
||||
}
|
||||
#endif
|
||||
else
|
||||
#endif
|
||||
// If the target temperature changes, restart
|
||||
if (tr_target_temperature[heater_index] != target) {
|
||||
tr_target_temperature[heater_index] = target;
|
||||
*state = target > 0 ? TRFirstHeating : TRInactive;
|
||||
{
|
||||
// If the target temperature changes, restart
|
||||
if (tr_target_temperature[heater_index] != target) {
|
||||
tr_target_temperature[heater_index] = target;
|
||||
*state = target > 0 ? TRFirstHeating : TRInactive;
|
||||
}
|
||||
}
|
||||
|
||||
switch (*state) {
|
||||
@ -2172,19 +2170,19 @@ void Temperature::isr() {
|
||||
);
|
||||
#endif
|
||||
#if HAS_TEMP_BED
|
||||
print_heater_state(degBed(), degTargetBed(),
|
||||
print_heater_state(degBed(), degTargetBed()
|
||||
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
||||
rawBedTemp(),
|
||||
, rawBedTemp()
|
||||
#endif
|
||||
-1 // BED
|
||||
, -1 // BED
|
||||
);
|
||||
#endif
|
||||
#if HOTENDS > 1
|
||||
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e),
|
||||
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
|
||||
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
||||
rawHotendTemp(e),
|
||||
, rawHotendTemp(e)
|
||||
#endif
|
||||
e
|
||||
, e
|
||||
);
|
||||
#endif
|
||||
SERIAL_PROTOCOLPGM(" @:");
|
||||
|
@ -170,14 +170,22 @@ class Temperature {
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
||||
static bool allow_cold_extrude;
|
||||
static int16_t extrude_min_temp;
|
||||
static bool tooColdToExtrude(uint8_t e) {
|
||||
FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
|
||||
FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
|
||||
return tooCold(degHotend(HOTEND_INDEX));
|
||||
}
|
||||
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
return tooCold(degTargetHotend(HOTEND_INDEX));
|
||||
}
|
||||
#else
|
||||
static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
|
||||
FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
|
||||
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
|
||||
#endif
|
||||
|
||||
private:
|
||||
@ -285,8 +293,11 @@ class Temperature {
|
||||
/**
|
||||
* Static (class) methods
|
||||
*/
|
||||
static float analog2temp(int raw, uint8_t e);
|
||||
static float analog2tempBed(int raw);
|
||||
static float analog2temp(const int raw, const uint8_t e);
|
||||
|
||||
#if HAS_TEMP_BED
|
||||
static float analog2tempBed(const int raw);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Called from the Temperature ISR
|
||||
@ -302,19 +313,19 @@ class Temperature {
|
||||
* Preheating hotends
|
||||
*/
|
||||
#ifdef MILLISECONDS_PREHEAT_TIME
|
||||
static bool is_preheating(uint8_t e) {
|
||||
static bool is_preheating(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
|
||||
}
|
||||
static void start_preheat_time(uint8_t e) {
|
||||
static void start_preheat_time(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
|
||||
}
|
||||
static void reset_preheat_time(uint8_t e) {
|
||||
static void reset_preheat_time(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
@ -329,36 +340,37 @@ class Temperature {
|
||||
static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio
|
||||
#endif
|
||||
|
||||
|
||||
//high level conversion routines, for use outside of temperature.cpp
|
||||
//inline so that there is no performance decrease.
|
||||
//deg=degreeCelsius
|
||||
|
||||
static float degHotend(uint8_t e) {
|
||||
FORCE_INLINE static float degHotend(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
return current_temperature[HOTEND_INDEX];
|
||||
}
|
||||
static float degBed() { return current_temperature_bed; }
|
||||
FORCE_INLINE static float degBed() { return current_temperature_bed; }
|
||||
|
||||
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
||||
static int16_t rawHotendTemp(uint8_t e) {
|
||||
FORCE_INLINE static int16_t rawHotendTemp(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
return current_temperature_raw[HOTEND_INDEX];
|
||||
}
|
||||
static int16_t rawBedTemp() { return current_temperature_bed_raw; }
|
||||
FORCE_INLINE static int16_t rawBedTemp() { return current_temperature_bed_raw; }
|
||||
#endif
|
||||
|
||||
static int16_t degTargetHotend(uint8_t e) {
|
||||
FORCE_INLINE static int16_t degTargetHotend(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
return target_temperature[HOTEND_INDEX];
|
||||
}
|
||||
|
||||
static int16_t degTargetBed() { return target_temperature_bed; }
|
||||
FORCE_INLINE static int16_t degTargetBed() { return target_temperature_bed; }
|
||||
|
||||
#if WATCH_HOTENDS
|
||||
static void start_watching_heater(const uint8_t e = 0);
|
||||
@ -399,21 +411,25 @@ class Temperature {
|
||||
#endif
|
||||
}
|
||||
|
||||
static bool isHeatingHotend(uint8_t e) {
|
||||
FORCE_INLINE static bool isHeatingHotend(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
|
||||
}
|
||||
static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
|
||||
FORCE_INLINE static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
|
||||
|
||||
static bool isCoolingHotend(uint8_t e) {
|
||||
FORCE_INLINE static bool isCoolingHotend(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
|
||||
}
|
||||
static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
||||
FORCE_INLINE static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
||||
|
||||
FORCE_INLINE static bool wait_for_heating(const uint8_t e) {
|
||||
return degTargetHotend(e) > TEMP_HYSTERESIS && abs(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
|
||||
}
|
||||
|
||||
/**
|
||||
* The software PWM power for a heater
|
||||
@ -480,11 +496,12 @@ class Temperature {
|
||||
|
||||
#if ENABLED(PROBING_HEATERS_OFF)
|
||||
static void pause(const bool p);
|
||||
static bool is_paused() { return paused; }
|
||||
FORCE_INLINE static bool is_paused() { return paused; }
|
||||
#endif
|
||||
|
||||
#if HEATER_IDLE_HANDLER
|
||||
static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
|
||||
|
||||
static void start_heater_idle_timer(const uint8_t e, const millis_t timeout_ms) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
@ -492,7 +509,7 @@ class Temperature {
|
||||
heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
|
||||
}
|
||||
|
||||
static void reset_heater_idle_timer(uint8_t e) {
|
||||
static void reset_heater_idle_timer(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
@ -503,7 +520,7 @@ class Temperature {
|
||||
#endif
|
||||
}
|
||||
|
||||
static bool is_heater_idle(uint8_t e) {
|
||||
FORCE_INLINE static bool is_heater_idle(const uint8_t e) {
|
||||
#if HOTENDS == 1
|
||||
UNUSED(e);
|
||||
#endif
|
||||
@ -511,7 +528,7 @@ class Temperature {
|
||||
}
|
||||
|
||||
#if HAS_TEMP_BED
|
||||
static void start_bed_idle_timer(millis_t timeout_ms) {
|
||||
static void start_bed_idle_timer(const millis_t timeout_ms) {
|
||||
bed_idle_timeout_ms = millis() + timeout_ms;
|
||||
bed_idle_timeout_exceeded = false;
|
||||
}
|
||||
@ -524,11 +541,10 @@ class Temperature {
|
||||
#endif
|
||||
}
|
||||
|
||||
static bool is_bed_idle() {
|
||||
return bed_idle_timeout_exceeded;
|
||||
}
|
||||
FORCE_INLINE static bool is_bed_idle() { return bed_idle_timeout_exceeded; }
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif // HEATER_IDLE_HANDLER
|
||||
|
||||
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
||||
static void print_heaterstates();
|
||||
@ -574,7 +590,7 @@ class Temperature {
|
||||
|
||||
typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
|
||||
|
||||
static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float current, const float target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
|
||||
static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
|
||||
|
||||
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
||||
static TRState thermal_runaway_state_machine[HOTENDS];
|
||||
|
Loading…
Reference in New Issue
Block a user