Stepper and Endstops as singleton objects
This commit is contained in:
parent
98f30283fa
commit
5e4e535ce8
@ -216,7 +216,7 @@ void manage_inactivity(bool ignore_stepper_queue = false);
|
||||
*/
|
||||
enum AxisEnum {X_AXIS = 0, A_AXIS = 0, Y_AXIS = 1, B_AXIS = 1, Z_AXIS = 2, C_AXIS = 2, E_AXIS = 3, X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 5};
|
||||
|
||||
enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8};
|
||||
#define _AXIS(AXIS) AXIS ##_AXIS
|
||||
|
||||
void enable_all_steppers();
|
||||
void disable_all_steppers();
|
||||
|
@ -48,6 +48,7 @@
|
||||
#include "ultralcd.h"
|
||||
#include "planner.h"
|
||||
#include "stepper.h"
|
||||
#include "endstops.h"
|
||||
#include "temperature.h"
|
||||
#include "cardreader.h"
|
||||
#include "configuration_store.h"
|
||||
@ -547,10 +548,6 @@ static void report_current_position();
|
||||
float extrude_min_temp = EXTRUDE_MINTEMP;
|
||||
#endif
|
||||
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
extern volatile bool z_probe_is_active;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SDSUPPORT)
|
||||
#include "SdFatUtil.h"
|
||||
int freeMemory() { return SdFatUtil::FreeRam(); }
|
||||
@ -711,7 +708,7 @@ void servo_init() {
|
||||
|
||||
#if HAS_SERVO_ENDSTOPS
|
||||
|
||||
z_probe_is_active = false;
|
||||
endstops.enable_z_probe(false);
|
||||
|
||||
/**
|
||||
* Set position of all defined Servo Endstops
|
||||
@ -831,7 +828,7 @@ void setup() {
|
||||
watchdog_init();
|
||||
#endif
|
||||
|
||||
st_init(); // Initialize stepper, this enables interrupts!
|
||||
stepper.init(); // Initialize stepper, this enables interrupts!
|
||||
setup_photpin();
|
||||
servo_init();
|
||||
|
||||
@ -915,7 +912,7 @@ void loop() {
|
||||
commands_in_queue--;
|
||||
cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
|
||||
}
|
||||
checkHitEndstops();
|
||||
endstops.report_state();
|
||||
idle();
|
||||
}
|
||||
|
||||
@ -1445,9 +1442,9 @@ static void setup_for_endstop_move() {
|
||||
feedrate_multiplier = 100;
|
||||
refresh_cmd_timeout();
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
|
||||
#endif
|
||||
enable_endstops(true);
|
||||
endstops.enable();
|
||||
}
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
@ -1553,7 +1550,7 @@ static void setup_for_endstop_move() {
|
||||
#if ENABLED(DELTA)
|
||||
|
||||
float start_z = current_position[Z_AXIS];
|
||||
long start_steps = st_get_position(Z_AXIS);
|
||||
long start_steps = stepper.position(Z_AXIS);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
|
||||
@ -1563,14 +1560,14 @@ static void setup_for_endstop_move() {
|
||||
feedrate = homing_feedrate[Z_AXIS] / 4;
|
||||
destination[Z_AXIS] = -10;
|
||||
prepare_move_raw(); // this will also set_current_to_destination
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
stepper.synchronize();
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
/**
|
||||
* We have to let the planner know where we are right now as it
|
||||
* is not where we said to go.
|
||||
*/
|
||||
long stop_steps = st_get_position(Z_AXIS);
|
||||
long stop_steps = stepper.position(Z_AXIS);
|
||||
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
|
||||
current_position[Z_AXIS] = mm;
|
||||
|
||||
@ -1588,10 +1585,10 @@ static void setup_for_endstop_move() {
|
||||
// Move down until the Z probe (or endstop?) is triggered
|
||||
float zPosition = -(Z_MAX_LENGTH + 10);
|
||||
line_to_z(zPosition);
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
// Tell the planner where we ended up - Get this from the stepper handler
|
||||
zPosition = st_get_axis_position_mm(Z_AXIS);
|
||||
zPosition = stepper.get_axis_position_mm(Z_AXIS);
|
||||
plan_set_position(
|
||||
current_position[X_AXIS], current_position[Y_AXIS], zPosition,
|
||||
current_position[E_AXIS]
|
||||
@ -1600,19 +1597,19 @@ static void setup_for_endstop_move() {
|
||||
// move up the retract distance
|
||||
zPosition += home_bump_mm(Z_AXIS);
|
||||
line_to_z(zPosition);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
stepper.synchronize();
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
// move back down slowly to find bed
|
||||
set_homing_bump_feedrate(Z_AXIS);
|
||||
|
||||
zPosition -= home_bump_mm(Z_AXIS) * 2;
|
||||
line_to_z(zPosition);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
stepper.synchronize();
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
// Get the current stepper position after bumping an endstop
|
||||
current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
|
||||
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
||||
sync_plan_position();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
@ -1641,7 +1638,7 @@ static void setup_for_endstop_move() {
|
||||
destination[Y_AXIS] = y;
|
||||
destination[Z_AXIS] = z;
|
||||
prepare_move_raw(); // this will also set_current_to_destination
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
#else
|
||||
|
||||
@ -1649,14 +1646,14 @@ static void setup_for_endstop_move() {
|
||||
|
||||
current_position[Z_AXIS] = z;
|
||||
line_to_current_position();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
feedrate = xy_travel_speed;
|
||||
|
||||
current_position[X_AXIS] = x;
|
||||
current_position[Y_AXIS] = y;
|
||||
line_to_current_position();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
#endif
|
||||
|
||||
@ -1681,9 +1678,9 @@ static void setup_for_endstop_move() {
|
||||
|
||||
static void clean_up_after_endstop_move() {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
|
||||
#endif
|
||||
endstops_not_homing();
|
||||
endstops.not_homing();
|
||||
feedrate = saved_feedrate;
|
||||
feedrate_multiplier = saved_feedrate_multiplier;
|
||||
refresh_cmd_timeout();
|
||||
@ -1697,7 +1694,7 @@ static void setup_for_endstop_move() {
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
|
||||
#endif
|
||||
|
||||
if (z_probe_is_active) return;
|
||||
if (endstops.z_probe_enabled) return;
|
||||
|
||||
#if HAS_SERVO_ENDSTOPS
|
||||
|
||||
@ -1757,7 +1754,7 @@ static void setup_for_endstop_move() {
|
||||
destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
|
||||
prepare_move_raw(); // this will also set_current_to_destination
|
||||
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
||||
z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
|
||||
@ -1778,10 +1775,10 @@ static void setup_for_endstop_move() {
|
||||
#endif // Z_PROBE_ALLEN_KEY
|
||||
|
||||
#if ENABLED(FIX_MOUNTED_PROBE)
|
||||
// Noting to be done. Just set z_probe_is_active
|
||||
// Noting to be done. Just set endstops.z_probe_enabled
|
||||
#endif
|
||||
|
||||
z_probe_is_active = true;
|
||||
endstops.enable_z_probe();
|
||||
|
||||
}
|
||||
|
||||
@ -1793,7 +1790,7 @@ static void setup_for_endstop_move() {
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
|
||||
#endif
|
||||
|
||||
if (!z_probe_is_active) return;
|
||||
if (!endstops.z_probe_enabled) return;
|
||||
|
||||
#if HAS_SERVO_ENDSTOPS
|
||||
|
||||
@ -1811,7 +1808,7 @@ static void setup_for_endstop_move() {
|
||||
}
|
||||
#endif
|
||||
raise_z_after_probing(); // this also updates current_position
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -1861,7 +1858,7 @@ static void setup_for_endstop_move() {
|
||||
destination[Y_AXIS] = 0;
|
||||
prepare_move_raw(); // this will also set_current_to_destination
|
||||
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
||||
bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
|
||||
@ -1881,10 +1878,10 @@ static void setup_for_endstop_move() {
|
||||
#endif // Z_PROBE_ALLEN_KEY
|
||||
|
||||
#if ENABLED(FIX_MOUNTED_PROBE)
|
||||
// Nothing to do here. Just clear z_probe_is_active
|
||||
// Nothing to do here. Just clear endstops.z_probe_enabled
|
||||
#endif
|
||||
|
||||
z_probe_is_active = false;
|
||||
endstops.enable_z_probe(false);
|
||||
}
|
||||
#endif // HAS_Z_MIN_PROBE
|
||||
|
||||
@ -2081,13 +2078,13 @@ static void setup_for_endstop_move() {
|
||||
}
|
||||
#endif
|
||||
|
||||
if (z_probe_is_active == dock) return;
|
||||
|
||||
if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
|
||||
axis_unhomed_error();
|
||||
return;
|
||||
}
|
||||
|
||||
if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
|
||||
|
||||
float oldXpos = current_position[X_AXIS]; // save x position
|
||||
if (dock) {
|
||||
#if Z_RAISE_AFTER_PROBING > 0
|
||||
@ -2105,7 +2102,7 @@ static void setup_for_endstop_move() {
|
||||
}
|
||||
do_blocking_move_to_x(oldXpos); // return to position before docking
|
||||
|
||||
z_probe_is_active = dock;
|
||||
endstops.enable_z_probe(!dock); // logically disable docked probe
|
||||
}
|
||||
|
||||
#endif // Z_PROBE_SLED
|
||||
@ -2167,39 +2164,39 @@ static void homeaxis(AxisEnum axis) {
|
||||
// Engage an X or Y Servo endstop if enabled
|
||||
if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
|
||||
servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
|
||||
if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
|
||||
if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Set a flag for Z motor locking
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
if (axis == Z_AXIS) In_Homing_Process(true);
|
||||
if (axis == Z_AXIS) stepper.set_homing_flag(true);
|
||||
#endif
|
||||
|
||||
// Move towards the endstop until an endstop is triggered
|
||||
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
||||
feedrate = homing_feedrate[axis];
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
// Set the axis position as setup for the move
|
||||
current_position[axis] = 0;
|
||||
sync_plan_position();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
|
||||
#endif
|
||||
enable_endstops(false); // Disable endstops while moving away
|
||||
endstops.enable(false); // Disable endstops while moving away
|
||||
|
||||
// Move away from the endstop by the axis HOME_BUMP_MM
|
||||
destination[axis] = -home_bump_mm(axis) * axis_home_dir;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
|
||||
#endif
|
||||
enable_endstops(true); // Enable endstops for next homing move
|
||||
endstops.enable(true); // Enable endstops for next homing move
|
||||
|
||||
// Slow down the feedrate for the next move
|
||||
set_homing_bump_feedrate(axis);
|
||||
@ -2207,7 +2204,7 @@ static void homeaxis(AxisEnum axis) {
|
||||
// Move slowly towards the endstop until triggered
|
||||
destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
|
||||
@ -2224,17 +2221,17 @@ static void homeaxis(AxisEnum axis) {
|
||||
else
|
||||
lockZ1 = (z_endstop_adj < 0);
|
||||
|
||||
if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
|
||||
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
|
||||
sync_plan_position();
|
||||
|
||||
// Move to the adjusted endstop height
|
||||
feedrate = homing_feedrate[axis];
|
||||
destination[Z_AXIS] = adj;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
|
||||
In_Homing_Process(false);
|
||||
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
|
||||
stepper.set_homing_flag(false);
|
||||
} // Z_AXIS
|
||||
#endif
|
||||
|
||||
@ -2242,9 +2239,9 @@ static void homeaxis(AxisEnum axis) {
|
||||
// retrace by the amount specified in endstop_adj
|
||||
if (endstop_adj[axis] * axis_home_dir < 0) {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
|
||||
#endif
|
||||
enable_endstops(false); // Disable endstops while moving away
|
||||
endstops.enable(false); // Disable endstops while moving away
|
||||
sync_plan_position();
|
||||
destination[axis] = endstop_adj[axis];
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
@ -2254,11 +2251,11 @@ static void homeaxis(AxisEnum axis) {
|
||||
}
|
||||
#endif
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
|
||||
#endif
|
||||
enable_endstops(true); // Enable endstops for next homing move
|
||||
endstops.enable(true); // Enable endstops for next homing move
|
||||
}
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
else {
|
||||
@ -2280,7 +2277,7 @@ static void homeaxis(AxisEnum axis) {
|
||||
|
||||
destination[axis] = current_position[axis];
|
||||
feedrate = 0.0;
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
axis_known_position[axis] = true;
|
||||
axis_homed[axis] = true;
|
||||
|
||||
@ -2301,7 +2298,7 @@ static void homeaxis(AxisEnum axis) {
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
|
||||
#endif
|
||||
servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
|
||||
if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
|
||||
if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -2499,7 +2496,7 @@ inline void gcode_G4() {
|
||||
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
|
||||
if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
|
||||
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
refresh_cmd_timeout();
|
||||
codenum += previous_cmd_ms; // keep track of when we started waiting
|
||||
|
||||
@ -2551,7 +2548,7 @@ inline void gcode_G28() {
|
||||
#endif
|
||||
|
||||
// Wait for planner moves to finish!
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
// For auto bed leveling, clear the level matrix
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
@ -2594,8 +2591,8 @@ inline void gcode_G28() {
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
|
||||
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
stepper.synchronize();
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
// Destination reached
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
|
||||
@ -2643,7 +2640,7 @@ inline void gcode_G28() {
|
||||
}
|
||||
#endif
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
/**
|
||||
* Update the current Z position even if it currently not real from
|
||||
@ -2676,7 +2673,7 @@ inline void gcode_G28() {
|
||||
destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
|
||||
feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
set_axis_is_at_home(X_AXIS);
|
||||
set_axis_is_at_home(Y_AXIS);
|
||||
@ -2690,8 +2687,8 @@ inline void gcode_G28() {
|
||||
destination[Y_AXIS] = current_position[Y_AXIS];
|
||||
line_to_destination();
|
||||
feedrate = 0.0;
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
stepper.synchronize();
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
@ -2784,7 +2781,7 @@ inline void gcode_G28() {
|
||||
|
||||
// Move in the XY plane
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
/**
|
||||
* Update the current positions for XY, Z is still at least at
|
||||
@ -2857,10 +2854,10 @@ inline void gcode_G28() {
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
|
||||
enable_endstops(false);
|
||||
endstops.enable(false);
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
|
||||
SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
@ -2875,7 +2872,7 @@ inline void gcode_G28() {
|
||||
set_destination_to_current();
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
|
||||
#endif
|
||||
@ -2885,7 +2882,7 @@ inline void gcode_G28() {
|
||||
feedrate = saved_feedrate;
|
||||
feedrate_multiplier = saved_feedrate_multiplier;
|
||||
refresh_cmd_timeout();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
@ -2921,7 +2918,7 @@ inline void gcode_G28() {
|
||||
#endif
|
||||
|
||||
feedrate = saved_feedrate;
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
/**
|
||||
@ -3015,7 +3012,7 @@ inline void gcode_G28() {
|
||||
#endif
|
||||
;
|
||||
line_to_current_position();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
// After recording the last point, activate the mbl and home
|
||||
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
|
||||
@ -3240,7 +3237,7 @@ inline void gcode_G28() {
|
||||
deploy_z_probe();
|
||||
#endif
|
||||
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
setup_for_endstop_move();
|
||||
|
||||
@ -3511,7 +3508,7 @@ inline void gcode_G28() {
|
||||
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
|
||||
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
||||
z_tmp = current_position[Z_AXIS],
|
||||
real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
|
||||
real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
@ -3588,9 +3585,9 @@ inline void gcode_G28() {
|
||||
#endif
|
||||
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
z_probe_is_active = false;
|
||||
endstops.enable_z_probe(false);
|
||||
#endif
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
#endif
|
||||
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
@ -3615,7 +3612,7 @@ inline void gcode_G28() {
|
||||
#endif
|
||||
deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
|
||||
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
// TODO: clear the leveling matrix or the planner will be set incorrectly
|
||||
setup_for_endstop_move(); // Too late. Must be done before deploying.
|
||||
|
||||
@ -3650,7 +3647,7 @@ inline void gcode_G28() {
|
||||
inline void gcode_G92() {
|
||||
bool didE = code_seen(axis_codes[E_AXIS]);
|
||||
|
||||
if (!didE) st_synchronize();
|
||||
if (!didE) stepper.synchronize();
|
||||
|
||||
bool didXYZ = false;
|
||||
for (int i = 0; i < NUM_AXIS; i++) {
|
||||
@ -3712,7 +3709,7 @@ inline void gcode_G92() {
|
||||
}
|
||||
|
||||
lcd_ignore_click();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
refresh_cmd_timeout();
|
||||
if (codenum > 0) {
|
||||
codenum += previous_cmd_ms; // wait until this time for a click
|
||||
@ -3853,7 +3850,7 @@ inline void gcode_M31() {
|
||||
*/
|
||||
inline void gcode_M32() {
|
||||
if (card.sdprinting)
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
|
||||
if (!namestartpos)
|
||||
@ -4819,7 +4816,7 @@ inline void gcode_M140() {
|
||||
*/
|
||||
inline void gcode_M81() {
|
||||
disable_all_heaters();
|
||||
finishAndDisableSteppers();
|
||||
stepper.finish_and_disable();
|
||||
#if FAN_COUNT > 0
|
||||
#if FAN_COUNT > 1
|
||||
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
|
||||
@ -4829,7 +4826,7 @@ inline void gcode_M81() {
|
||||
#endif
|
||||
delay(1000); // Wait 1 second before switching off
|
||||
#if HAS_SUICIDE
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
suicide();
|
||||
#elif HAS_POWER_SWITCH
|
||||
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
||||
@ -4864,10 +4861,10 @@ inline void gcode_M18_M84() {
|
||||
else {
|
||||
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
|
||||
if (all_axis) {
|
||||
finishAndDisableSteppers();
|
||||
stepper.finish_and_disable();
|
||||
}
|
||||
else {
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
if (code_seen('X')) disable_x();
|
||||
if (code_seen('Y')) disable_y();
|
||||
if (code_seen('Z')) disable_z();
|
||||
@ -4927,35 +4924,7 @@ static void report_current_position() {
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
||||
|
||||
CRITICAL_SECTION_START;
|
||||
extern volatile long count_position[NUM_AXIS];
|
||||
long xpos = count_position[X_AXIS],
|
||||
ypos = count_position[Y_AXIS],
|
||||
zpos = count_position[Z_AXIS];
|
||||
CRITICAL_SECTION_END;
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
||||
#endif
|
||||
SERIAL_PROTOCOL(xpos);
|
||||
|
||||
#if ENABLED(COREXY)
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
#endif
|
||||
SERIAL_PROTOCOL(ypos);
|
||||
|
||||
#if ENABLED(COREXZ)
|
||||
SERIAL_PROTOCOLPGM(" C:");
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
#endif
|
||||
SERIAL_PROTOCOL(zpos);
|
||||
|
||||
SERIAL_EOL;
|
||||
stepper.report_positions();
|
||||
|
||||
#if ENABLED(SCARA)
|
||||
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
||||
@ -5039,12 +5008,12 @@ inline void gcode_M119() {
|
||||
/**
|
||||
* M120: Enable endstops and set non-homing endstop state to "enabled"
|
||||
*/
|
||||
inline void gcode_M120() { enable_endstops_globally(true); }
|
||||
inline void gcode_M120() { endstops.enable_globally(true); }
|
||||
|
||||
/**
|
||||
* M121: Disable endstops and set non-homing endstop state to "disabled"
|
||||
*/
|
||||
inline void gcode_M121() { enable_endstops_globally(false); }
|
||||
inline void gcode_M121() { endstops.enable_globally(false); }
|
||||
|
||||
#if ENABLED(BLINKM)
|
||||
|
||||
@ -5439,7 +5408,7 @@ inline void gcode_M226() {
|
||||
if (pin_number > -1) {
|
||||
int target = LOW;
|
||||
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
pinMode(pin_number, INPUT);
|
||||
|
||||
@ -5801,7 +5770,7 @@ inline void gcode_M303() {
|
||||
/**
|
||||
* M400: Finish all moves
|
||||
*/
|
||||
inline void gcode_M400() { st_synchronize(); }
|
||||
inline void gcode_M400() { stepper.synchronize(); }
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
|
||||
|
||||
@ -5887,7 +5856,7 @@ inline void gcode_M400() { st_synchronize(); }
|
||||
* This will stop the carriages mid-move, so most likely they
|
||||
* will be out of sync with the stepper position after this.
|
||||
*/
|
||||
inline void gcode_M410() { quickStop(); }
|
||||
inline void gcode_M410() { stepper.quick_stop(); }
|
||||
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
@ -6111,7 +6080,7 @@ inline void gcode_M503() {
|
||||
RUNPLAN;
|
||||
|
||||
//finish moves
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
//disable extruder steppers so filament can be removed
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
@ -6135,7 +6104,7 @@ inline void gcode_M503() {
|
||||
current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
|
||||
destination[E_AXIS] = current_position[E_AXIS];
|
||||
line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
#endif
|
||||
} // while(!lcd_clicked)
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
@ -6143,7 +6112,7 @@ inline void gcode_M503() {
|
||||
|
||||
#if ENABLED(AUTO_FILAMENT_CHANGE)
|
||||
current_position[E_AXIS] = 0;
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
#endif
|
||||
|
||||
//return to normal
|
||||
@ -6198,7 +6167,7 @@ inline void gcode_M503() {
|
||||
* Note: the X axis should be homed after changing dual x-carriage mode.
|
||||
*/
|
||||
inline void gcode_M605() {
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
if (code_seen('S')) dual_x_carriage_mode = code_value();
|
||||
switch (dual_x_carriage_mode) {
|
||||
case DXC_DUPLICATION_MODE:
|
||||
@ -6375,7 +6344,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
|
||||
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
|
||||
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
|
||||
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
||||
@ -6460,7 +6429,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
|
||||
} // (tmp_extruder != active_extruder)
|
||||
|
||||
#if ENABLED(EXT_SOLENOID)
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
disable_all_solenoids();
|
||||
enable_solenoid_on_active_extruder();
|
||||
#endif // EXT_SOLENOID
|
||||
@ -7400,7 +7369,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
||||
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
|
||||
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
|
||||
sync_plan_position();
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
extruder_duplication_enabled = true;
|
||||
active_extruder_parked = false;
|
||||
}
|
||||
@ -7927,7 +7896,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
||||
destination[E_AXIS] = oldedes;
|
||||
plan_set_e_position(oldepos);
|
||||
previous_cmd_ms = ms; // refresh_cmd_timeout()
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
switch (active_extruder) {
|
||||
case 0:
|
||||
E0_ENABLE_WRITE(oldstatus);
|
||||
@ -8004,7 +7973,7 @@ void kill(const char* lcd_msg) {
|
||||
if (!filament_ran_out) {
|
||||
filament_ran_out = true;
|
||||
enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -596,7 +596,7 @@ void CardReader::updir() {
|
||||
}
|
||||
|
||||
void CardReader::printingHasFinished() {
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
|
||||
file.close();
|
||||
file_subcall_ctr--;
|
||||
|
317
Marlin/endstops.cpp
Normal file
317
Marlin/endstops.cpp
Normal file
@ -0,0 +1,317 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* endstops.cpp - A singleton object to manage endstops
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "endstops.h"
|
||||
#include "stepper.h"
|
||||
#include "ultralcd.h"
|
||||
|
||||
// TEST_ENDSTOP: test the old and the current status of an endstop
|
||||
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
|
||||
|
||||
Endstops endstops;
|
||||
|
||||
Endstops::Endstops() {
|
||||
enable_globally(ENABLED(ENDSTOPS_ONLY_FOR_HOMING));
|
||||
enable(true);
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
enable_z_probe(false);
|
||||
#endif
|
||||
} // Endstops::Endstops
|
||||
|
||||
void Endstops::init() {
|
||||
|
||||
#if HAS_X_MIN
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_XMIN)
|
||||
WRITE(X_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Y_MIN
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_YMIN)
|
||||
WRITE(Y_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_MIN
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
||||
WRITE(Z_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z2_MIN
|
||||
SET_INPUT(Z2_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
||||
WRITE(Z2_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_X_MAX
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_XMAX)
|
||||
WRITE(X_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Y_MAX
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_YMAX)
|
||||
WRITE(Y_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_MAX
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
||||
WRITE(Z_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z2_MAX
|
||||
SET_INPUT(Z2_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
||||
WRITE(Z2_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
|
||||
SET_INPUT(Z_MIN_PROBE_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
|
||||
WRITE(Z_MIN_PROBE_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
} // Endstops::init
|
||||
|
||||
void Endstops::report_state() {
|
||||
if (endstop_hit_bits) {
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
|
||||
#define _SET_STOP_CHAR(A,C) (chr## A = C)
|
||||
#else
|
||||
#define _SET_STOP_CHAR(A,C) ;
|
||||
#endif
|
||||
|
||||
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
|
||||
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \
|
||||
_SET_STOP_CHAR(A,C); }while(0)
|
||||
|
||||
#define _ENDSTOP_HIT_TEST(A,C) \
|
||||
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
|
||||
_ENDSTOP_HIT_ECHO(A,C)
|
||||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
|
||||
_ENDSTOP_HIT_TEST(X, 'X');
|
||||
_ENDSTOP_HIT_TEST(Y, 'Y');
|
||||
_ENDSTOP_HIT_TEST(Z, 'Z');
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
||||
#define P_AXIS Z_AXIS
|
||||
if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
|
||||
#endif
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
|
||||
sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
|
||||
lcd_setstatus(msg);
|
||||
#endif
|
||||
|
||||
hit_on_purpose();
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
|
||||
if (abort_on_endstop_hit) {
|
||||
card.sdprinting = false;
|
||||
card.closefile();
|
||||
stepper.quick_stop();
|
||||
disable_all_heaters(); // switch off all heaters.
|
||||
}
|
||||
#endif
|
||||
}
|
||||
} // Endstops::report_state
|
||||
|
||||
// Check endstops - Called from ISR!
|
||||
void Endstops::update() {
|
||||
|
||||
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
|
||||
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
|
||||
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
|
||||
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
||||
|
||||
// UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
|
||||
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
|
||||
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
|
||||
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
|
||||
|
||||
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
|
||||
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
|
||||
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
|
||||
_ENDSTOP_HIT(AXIS); \
|
||||
stepper.endstop_triggered(_AXIS(AXIS)); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
// Head direction in -X axis for CoreXY and CoreXZ bots.
|
||||
// If Delta1 == -Delta2, the movement is only in Y or Z axis
|
||||
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(A_AXIS) == stepper.motor_direction(CORE_AXIS_2))) {
|
||||
if (stepper.motor_direction(X_HEAD))
|
||||
#else
|
||||
if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot)
|
||||
#endif
|
||||
{ // -direction
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == -1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||
#endif
|
||||
{
|
||||
#if HAS_X_MIN
|
||||
UPDATE_ENDSTOP(X, MIN);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == 1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||
#endif
|
||||
{
|
||||
#if HAS_X_MAX
|
||||
UPDATE_ENDSTOP(X, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(COREXY)
|
||||
// Head direction in -Y axis for CoreXY bots.
|
||||
// If DeltaX == DeltaY, the movement is only in X axis
|
||||
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[B_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(B_AXIS))) {
|
||||
if (stepper.motor_direction(Y_HEAD))
|
||||
#else
|
||||
if (stepper.motor_direction(Y_AXIS)) // -direction
|
||||
#endif
|
||||
{ // -direction
|
||||
#if HAS_Y_MIN
|
||||
UPDATE_ENDSTOP(Y, MIN);
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
#if HAS_Y_MAX
|
||||
UPDATE_ENDSTOP(Y, MAX);
|
||||
#endif
|
||||
}
|
||||
#if ENABLED(COREXY)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(COREXZ)
|
||||
// Head direction in -Z axis for CoreXZ bots.
|
||||
// If DeltaX == DeltaZ, the movement is only in X axis
|
||||
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[C_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(C_AXIS))) {
|
||||
if (stepper.motor_direction(Z_HEAD))
|
||||
#else
|
||||
if (stepper.motor_direction(Z_AXIS))
|
||||
#endif
|
||||
{ // z -direction
|
||||
#if HAS_Z_MIN
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
|
||||
UPDATE_ENDSTOP_BIT(Z, MIN);
|
||||
#if HAS_Z2_MIN
|
||||
UPDATE_ENDSTOP_BIT(Z2, MIN);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
||||
#endif
|
||||
|
||||
byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
|
||||
|
||||
if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
||||
stepper.endstop_triggered(Z_AXIS);
|
||||
SBI(endstop_hit_bits, Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
stepper.kill_current_block();
|
||||
}
|
||||
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN);
|
||||
#else
|
||||
UPDATE_ENDSTOP(Z, MIN);
|
||||
#endif
|
||||
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
|
||||
#endif // HAS_Z_MIN
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (z_probe_enabled) {
|
||||
UPDATE_ENDSTOP(Z, MIN_PROBE);
|
||||
if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else { // z +direction
|
||||
#if HAS_Z_MAX
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
|
||||
UPDATE_ENDSTOP_BIT(Z, MAX);
|
||||
#if HAS_Z2_MAX
|
||||
UPDATE_ENDSTOP_BIT(Z2, MAX);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
|
||||
#endif
|
||||
|
||||
byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
|
||||
|
||||
if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
||||
stepper.endstop_triggered(Z_AXIS);
|
||||
SBI(endstop_hit_bits, Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
stepper.kill_current_block();
|
||||
}
|
||||
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
UPDATE_ENDSTOP(Z, MAX);
|
||||
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif // Z_MAX_PIN
|
||||
}
|
||||
#if ENABLED(COREXZ)
|
||||
}
|
||||
#endif
|
||||
old_endstop_bits = current_endstop_bits;
|
||||
} // Endstops::update()
|
94
Marlin/endstops.h
Normal file
94
Marlin/endstops.h
Normal file
@ -0,0 +1,94 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* endstops.h - manages endstops
|
||||
*/
|
||||
|
||||
#ifndef ENDSTOPS_H
|
||||
#define ENDSTOPS_H
|
||||
|
||||
enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8};
|
||||
|
||||
class Endstops {
|
||||
|
||||
public:
|
||||
|
||||
volatile char endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
uint16_t current_endstop_bits = 0,
|
||||
old_endstop_bits = 0;
|
||||
#else
|
||||
byte current_endstop_bits = 0,
|
||||
old_endstop_bits = 0;
|
||||
#endif
|
||||
|
||||
|
||||
bool enabled = true;
|
||||
bool enabled_globally =
|
||||
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
|
||||
false
|
||||
#else
|
||||
true
|
||||
#endif
|
||||
;
|
||||
|
||||
Endstops();
|
||||
|
||||
/**
|
||||
* Initialize the endstop pins
|
||||
*/
|
||||
void init();
|
||||
|
||||
/**
|
||||
* Update the endstops bits from the pins
|
||||
*/
|
||||
void update();
|
||||
|
||||
/**
|
||||
* Print an error message reporting the position when the endstops were last hit.
|
||||
*/
|
||||
void report_state(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
||||
|
||||
// Enable / disable endstop checking globally
|
||||
FORCE_INLINE void enable_globally(bool onoff=true) { enabled_globally = enabled = onoff; }
|
||||
|
||||
// Enable / disable endstop checking
|
||||
FORCE_INLINE void enable(bool onoff=true) { enabled = onoff; }
|
||||
|
||||
// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
|
||||
FORCE_INLINE void not_homing() { enabled = enabled_globally; }
|
||||
|
||||
// Clear endstops (i.e., they were hit intentionally) to suppress the report
|
||||
FORCE_INLINE void hit_on_purpose() { endstop_hit_bits = 0; }
|
||||
|
||||
// Enable / disable endstop z-probe checking
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
volatile bool z_probe_enabled = false;
|
||||
FORCE_INLINE void enable_z_probe(bool onoff=true) { z_probe_enabled = onoff; }
|
||||
#endif
|
||||
};
|
||||
|
||||
extern Endstops endstops;
|
||||
|
||||
#endif // ENDSTOPS_H
|
@ -1085,7 +1085,7 @@ float junction_deviation = 0.1;
|
||||
|
||||
planner_recalculate();
|
||||
|
||||
st_wake_up();
|
||||
stepper.wake_up();
|
||||
|
||||
} // plan_buffer_line()
|
||||
|
||||
@ -1097,7 +1097,7 @@ float junction_deviation = 0.1;
|
||||
* On CORE machines XYZ is derived from ABC.
|
||||
*/
|
||||
vector_3 plan_get_position() {
|
||||
vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS));
|
||||
vector_3 position = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
|
||||
|
||||
//position.debug("in plan_get position");
|
||||
//plan_bed_level_matrix.debug("in plan_get_position");
|
||||
@ -1132,7 +1132,7 @@ float junction_deviation = 0.1;
|
||||
ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
|
||||
nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
|
||||
ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||
st_set_position(nx, ny, nz, ne);
|
||||
stepper.set_position(nx, ny, nz, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
|
||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
|
||||
@ -1140,7 +1140,7 @@ float junction_deviation = 0.1;
|
||||
|
||||
void plan_set_e_position(const float& e) {
|
||||
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||
st_set_e_position(position[E_AXIS]);
|
||||
stepper.set_e_position(position[E_AXIS]);
|
||||
}
|
||||
|
||||
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
|
||||
|
@ -21,7 +21,7 @@
|
||||
*/
|
||||
|
||||
/**
|
||||
* stepper.cpp - stepper motor driver: executes motion plans using stepper motors
|
||||
* stepper.cpp - A singleton object to execute motion plans using stepper motors
|
||||
* Marlin Firmware
|
||||
*
|
||||
* Derived from Grbl
|
||||
@ -46,6 +46,7 @@
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "stepper.h"
|
||||
#include "endstops.h"
|
||||
#include "planner.h"
|
||||
#include "temperature.h"
|
||||
#include "ultralcd.h"
|
||||
@ -57,85 +58,7 @@
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//============================= public variables ============================
|
||||
//===========================================================================
|
||||
block_t* current_block; // A pointer to the block currently being traced
|
||||
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
volatile bool z_probe_is_active = false;
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//============================= private variables ===========================
|
||||
//===========================================================================
|
||||
//static makes it impossible to be called from outside of this file by extern.!
|
||||
|
||||
// Variables used by The Stepper Driver Interrupt
|
||||
static unsigned char out_bits = 0; // The next stepping-bits to be output
|
||||
static unsigned int cleaning_buffer_counter;
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
static bool performing_homing = false,
|
||||
locked_z_motor = false,
|
||||
locked_z2_motor = false;
|
||||
#endif
|
||||
|
||||
// Counter variables for the Bresenham line tracer
|
||||
static long counter_x, counter_y, counter_z, counter_e;
|
||||
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
static long advance_rate, advance, final_advance = 0;
|
||||
static long old_advance = 0;
|
||||
static long e_steps[4];
|
||||
#endif
|
||||
|
||||
static long acceleration_time, deceleration_time;
|
||||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
static unsigned short acc_step_rate; // needed for deceleration start point
|
||||
static uint8_t step_loops;
|
||||
static uint8_t step_loops_nominal;
|
||||
static unsigned short OCR1A_nominal;
|
||||
|
||||
volatile long endstops_trigsteps[3] = { 0 };
|
||||
volatile long endstops_stepsTotal, endstops_stepsDone;
|
||||
static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
||||
|
||||
#if DISABLED(Z_DUAL_ENDSTOPS)
|
||||
static byte
|
||||
#else
|
||||
static uint16_t
|
||||
#endif
|
||||
old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
bool abort_on_endstop_hit = false;
|
||||
#endif
|
||||
|
||||
#if HAS_MOTOR_CURRENT_PWM
|
||||
#ifndef PWM_MOTOR_CURRENT
|
||||
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
|
||||
#endif
|
||||
const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
|
||||
#endif
|
||||
|
||||
static bool check_endstops = true;
|
||||
static bool check_endstops_global =
|
||||
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
|
||||
false
|
||||
#else
|
||||
true
|
||||
#endif
|
||||
;
|
||||
|
||||
volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
|
||||
volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//================================ functions ================================
|
||||
//===========================================================================
|
||||
Stepper stepper; // Singleton
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
#define X_APPLY_DIR(v,ALWAYS) \
|
||||
@ -173,12 +96,12 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
#define Z_APPLY_STEP(v,Q) \
|
||||
if (performing_homing) { \
|
||||
if (Z_HOME_DIR > 0) {\
|
||||
if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
||||
if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
||||
if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
||||
if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
||||
} \
|
||||
else { \
|
||||
if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
||||
if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
||||
if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
||||
if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
||||
} \
|
||||
} \
|
||||
else { \
|
||||
@ -195,31 +118,6 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
|
||||
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
|
||||
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 24 bit result
|
||||
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %A1, %A2 \n\t" \
|
||||
"add %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r0 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (charIn1), \
|
||||
"d" (intIn2) \
|
||||
: \
|
||||
"r26" \
|
||||
)
|
||||
|
||||
// intRes = longIn1 * longIn2 >> 24
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
@ -281,312 +179,38 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
|
||||
|
||||
void enable_endstops(bool check) { check_endstops = check; }
|
||||
|
||||
void enable_endstops_globally(bool check) { check_endstops_global = check_endstops = check; }
|
||||
|
||||
void endstops_not_homing() { check_endstops = check_endstops_global; }
|
||||
|
||||
void endstops_hit_on_purpose() { endstop_hit_bits = 0; }
|
||||
|
||||
void checkHitEndstops() {
|
||||
if (endstop_hit_bits) {
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
|
||||
#define _SET_STOP_CHAR(A,C) (chr## A = C)
|
||||
#else
|
||||
#define _SET_STOP_CHAR(A,C) ;
|
||||
#endif
|
||||
|
||||
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
|
||||
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", endstops_trigsteps[A ##_AXIS] / axis_steps_per_unit[A ##_AXIS]); \
|
||||
_SET_STOP_CHAR(A,C); }while(0)
|
||||
|
||||
#define _ENDSTOP_HIT_TEST(A,C) \
|
||||
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
|
||||
_ENDSTOP_HIT_ECHO(A,C)
|
||||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
|
||||
_ENDSTOP_HIT_TEST(X, 'X');
|
||||
_ENDSTOP_HIT_TEST(Y, 'Y');
|
||||
_ENDSTOP_HIT_TEST(Z, 'Z');
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
||||
#define P_AXIS Z_AXIS
|
||||
if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
|
||||
#endif
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
|
||||
sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
|
||||
lcd_setstatus(msg);
|
||||
#endif
|
||||
|
||||
endstops_hit_on_purpose();
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
|
||||
if (abort_on_endstop_hit) {
|
||||
card.sdprinting = false;
|
||||
card.closefile();
|
||||
quickStop();
|
||||
disable_all_heaters(); // switch off all heaters.
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Check endstops - Called from ISR!
|
||||
inline void update_endstops() {
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
uint16_t
|
||||
#else
|
||||
byte
|
||||
#endif
|
||||
current_endstop_bits = 0;
|
||||
|
||||
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
|
||||
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
|
||||
#define _AXIS(AXIS) AXIS ##_AXIS
|
||||
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
|
||||
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
||||
|
||||
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
|
||||
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
|
||||
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
|
||||
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
|
||||
// TEST_ENDSTOP: test the old and the current status of an endstop
|
||||
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
|
||||
#define _SET_TRIGSTEPS(AXIS) do { \
|
||||
float axis_pos = count_position[_AXIS(AXIS)]; \
|
||||
if (_AXIS(AXIS) == A_AXIS) \
|
||||
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
|
||||
else if (_AXIS(AXIS) == CORE_AXIS_2) \
|
||||
axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
|
||||
endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
|
||||
} while(0)
|
||||
|
||||
#else
|
||||
|
||||
#define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
|
||||
|
||||
#endif // COREXY || COREXZ
|
||||
|
||||
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
|
||||
SET_ENDSTOP_BIT(AXIS, MINMAX); \
|
||||
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
|
||||
_SET_TRIGSTEPS(AXIS); \
|
||||
_ENDSTOP_HIT(AXIS); \
|
||||
step_events_completed = current_block->step_event_count; \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
// Head direction in -X axis for CoreXY and CoreXZ bots.
|
||||
// If Delta1 == -Delta2, the movement is only in Y or Z axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
|
||||
if (TEST(out_bits, X_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
|
||||
#endif
|
||||
{ // -direction
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||
#endif
|
||||
{
|
||||
#if HAS_X_MIN
|
||||
UPDATE_ENDSTOP(X, MIN);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||
#endif
|
||||
{
|
||||
#if HAS_X_MAX
|
||||
UPDATE_ENDSTOP(X, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(COREXY)
|
||||
// Head direction in -Y axis for CoreXY bots.
|
||||
// If DeltaX == DeltaY, the movement is only in X axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
|
||||
if (TEST(out_bits, Y_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, Y_AXIS)) // -direction
|
||||
#endif
|
||||
{ // -direction
|
||||
#if HAS_Y_MIN
|
||||
UPDATE_ENDSTOP(Y, MIN);
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
#if HAS_Y_MAX
|
||||
UPDATE_ENDSTOP(Y, MAX);
|
||||
#endif
|
||||
}
|
||||
#if ENABLED(COREXY)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(COREXZ)
|
||||
// Head direction in -Z axis for CoreXZ bots.
|
||||
// If DeltaX == DeltaZ, the movement is only in X axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
|
||||
if (TEST(out_bits, Z_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, Z_AXIS))
|
||||
#endif
|
||||
{ // z -direction
|
||||
#if HAS_Z_MIN
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
SET_ENDSTOP_BIT(Z, MIN);
|
||||
#if HAS_Z2_MIN
|
||||
SET_ENDSTOP_BIT(Z2, MIN);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
||||
#endif
|
||||
|
||||
byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
|
||||
|
||||
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
SBI(endstop_hit_bits, Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (z_probe_is_active) UPDATE_ENDSTOP(Z, MIN);
|
||||
#else
|
||||
UPDATE_ENDSTOP(Z, MIN);
|
||||
#endif
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (z_probe_is_active) {
|
||||
UPDATE_ENDSTOP(Z, MIN_PROBE);
|
||||
if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else { // z +direction
|
||||
#if HAS_Z_MAX
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
|
||||
SET_ENDSTOP_BIT(Z, MAX);
|
||||
#if HAS_Z2_MAX
|
||||
SET_ENDSTOP_BIT(Z2, MAX);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
|
||||
#endif
|
||||
|
||||
byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
|
||||
|
||||
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
SBI(endstop_hit_bits, Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
UPDATE_ENDSTOP(Z, MAX);
|
||||
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif // Z_MAX_PIN
|
||||
}
|
||||
#if ENABLED(COREXZ)
|
||||
}
|
||||
#endif
|
||||
old_endstop_bits = current_endstop_bits;
|
||||
}
|
||||
|
||||
// __________________________
|
||||
// /| |\ _________________ ^
|
||||
// / | | \ /| |\ |
|
||||
// / | | \ / | | \ s
|
||||
// / | | | | | \ p
|
||||
// / | | | | | \ e
|
||||
// +-----+------------------------+---+--+---------------+----+ e
|
||||
// | BLOCK 1 | BLOCK 2 | d
|
||||
//
|
||||
// time ----->
|
||||
//
|
||||
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||||
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||||
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||||
// The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
|
||||
|
||||
void st_wake_up() {
|
||||
/**
|
||||
* __________________________
|
||||
* /| |\ _________________ ^
|
||||
* / | | \ /| |\ |
|
||||
* / | | \ / | | \ s
|
||||
* / | | | | | \ p
|
||||
* / | | | | | \ e
|
||||
* +-----+------------------------+---+--+---------------+----+ e
|
||||
* | BLOCK 1 | BLOCK 2 | d
|
||||
*
|
||||
* time ----->
|
||||
*
|
||||
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||||
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||||
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||||
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
|
||||
*/
|
||||
void Stepper::wake_up() {
|
||||
// TCNT1 = 0;
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||
unsigned short timer;
|
||||
|
||||
NOMORE(step_rate, MAX_STEP_FREQUENCY);
|
||||
|
||||
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||
step_rate = (step_rate >> 2) & 0x3fff;
|
||||
step_loops = 4;
|
||||
}
|
||||
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
||||
step_rate = (step_rate >> 1) & 0x7fff;
|
||||
step_loops = 2;
|
||||
}
|
||||
else {
|
||||
step_loops = 1;
|
||||
}
|
||||
|
||||
NOLESS(step_rate, F_CPU / 500000);
|
||||
step_rate -= F_CPU / 500000; // Correct for minimal speed
|
||||
if (step_rate >= (8 * 256)) { // higher step rate
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
|
||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
|
||||
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
||||
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
||||
}
|
||||
else { // lower step rates
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
||||
table_address += ((step_rate) >> 1) & 0xfffc;
|
||||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
|
||||
}
|
||||
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
|
||||
return timer;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the stepper direction of each axis
|
||||
*
|
||||
* X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
|
||||
* X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
|
||||
*/
|
||||
void set_stepper_direction() {
|
||||
void Stepper::set_directions() {
|
||||
|
||||
#define SET_STEP_DIR(AXIS) \
|
||||
if (TEST(out_bits, AXIS ##_AXIS)) { \
|
||||
if (motor_direction(AXIS ##_AXIS)) { \
|
||||
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
|
||||
count_direction[AXIS ##_AXIS] = -1; \
|
||||
} \
|
||||
@ -600,7 +224,7 @@ void set_stepper_direction() {
|
||||
SET_STEP_DIR(Z); // C
|
||||
|
||||
#if DISABLED(ADVANCE)
|
||||
if (TEST(out_bits, E_AXIS)) {
|
||||
if (motor_direction(E_AXIS)) {
|
||||
REV_E_DIR();
|
||||
count_direction[E_AXIS] = -1;
|
||||
}
|
||||
@ -611,49 +235,11 @@ void set_stepper_direction() {
|
||||
#endif //!ADVANCE
|
||||
}
|
||||
|
||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||
// block begins.
|
||||
FORCE_INLINE void trapezoid_generator_reset() {
|
||||
|
||||
static int8_t last_extruder = -1;
|
||||
|
||||
if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) {
|
||||
out_bits = current_block->direction_bits;
|
||||
last_extruder = current_block->active_extruder;
|
||||
set_stepper_direction();
|
||||
}
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
advance = current_block->initial_advance;
|
||||
final_advance = current_block->final_advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
#endif
|
||||
deceleration_time = 0;
|
||||
// step_rate to timer interval
|
||||
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
||||
// make a note of the number of step loops required at nominal speed
|
||||
step_loops_nominal = step_loops;
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
OCR1A = acceleration_time;
|
||||
|
||||
// SERIAL_ECHO_START;
|
||||
// SERIAL_ECHOPGM("advance :");
|
||||
// SERIAL_ECHO(current_block->advance/256.0);
|
||||
// SERIAL_ECHOPGM("advance rate :");
|
||||
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
||||
// SERIAL_ECHOPGM("initial advance :");
|
||||
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||
// SERIAL_ECHOPGM("final advance :");
|
||||
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||
ISR(TIMER1_COMPA_vect) {
|
||||
ISR(TIMER1_COMPA_vect) { stepper.isr(); }
|
||||
|
||||
void Stepper::isr() {
|
||||
if (cleaning_buffer_counter) {
|
||||
current_block = NULL;
|
||||
plan_discard_current_block();
|
||||
@ -672,8 +258,8 @@ ISR(TIMER1_COMPA_vect) {
|
||||
if (current_block) {
|
||||
current_block->busy = true;
|
||||
trapezoid_generator_reset();
|
||||
counter_x = -(current_block->step_event_count >> 1);
|
||||
counter_y = counter_z = counter_e = counter_x;
|
||||
counter_X = -(current_block->step_event_count >> 1);
|
||||
counter_Y = counter_Z = counter_E = counter_X;
|
||||
step_events_completed = 0;
|
||||
|
||||
#if ENABLED(Z_LATE_ENABLE)
|
||||
@ -697,9 +283,9 @@ ISR(TIMER1_COMPA_vect) {
|
||||
|
||||
// Update endstops state, if enabled
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (check_endstops || z_probe_is_active) update_endstops();
|
||||
if (endstops.enabled || endstops.z_probe_enabled) endstops.update();
|
||||
#else
|
||||
if (check_endstops) update_endstops();
|
||||
if (endstops.enabled) endstops.update();
|
||||
#endif
|
||||
|
||||
// Take multiple steps per interrupt (For high speed moves)
|
||||
@ -709,48 +295,47 @@ ISR(TIMER1_COMPA_vect) {
|
||||
#endif
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
counter_e += current_block->steps[E_AXIS];
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
|
||||
counter_E += current_block->steps[E_AXIS];
|
||||
if (counter_E > 0) {
|
||||
counter_E -= current_block->step_event_count;
|
||||
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
|
||||
}
|
||||
#endif //ADVANCE
|
||||
|
||||
#define _COUNTER(axis) counter_## axis
|
||||
#define _COUNTER(AXIS) counter_## AXIS
|
||||
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
||||
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
||||
|
||||
#define STEP_ADD(axis, AXIS) \
|
||||
_COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
|
||||
if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
||||
#define STEP_ADD(AXIS) \
|
||||
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
|
||||
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
||||
|
||||
STEP_ADD(x,X);
|
||||
STEP_ADD(y,Y);
|
||||
STEP_ADD(z,Z);
|
||||
STEP_ADD(X);
|
||||
STEP_ADD(Y);
|
||||
STEP_ADD(Z);
|
||||
#if DISABLED(ADVANCE)
|
||||
STEP_ADD(e,E);
|
||||
STEP_ADD(E);
|
||||
#endif
|
||||
|
||||
#define STEP_IF_COUNTER(axis, AXIS) \
|
||||
if (_COUNTER(axis) > 0) { \
|
||||
_COUNTER(axis) -= current_block->step_event_count; \
|
||||
#define STEP_IF_COUNTER(AXIS) \
|
||||
if (_COUNTER(AXIS) > 0) { \
|
||||
_COUNTER(AXIS) -= current_block->step_event_count; \
|
||||
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
||||
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
||||
}
|
||||
|
||||
STEP_IF_COUNTER(x, X);
|
||||
STEP_IF_COUNTER(y, Y);
|
||||
STEP_IF_COUNTER(z, Z);
|
||||
STEP_IF_COUNTER(X);
|
||||
STEP_IF_COUNTER(Y);
|
||||
STEP_IF_COUNTER(Z);
|
||||
#if DISABLED(ADVANCE)
|
||||
STEP_IF_COUNTER(e, E);
|
||||
STEP_IF_COUNTER(E);
|
||||
#endif
|
||||
|
||||
step_events_completed++;
|
||||
if (step_events_completed >= current_block->step_event_count) break;
|
||||
}
|
||||
// Calculate new timer value
|
||||
unsigned short timer;
|
||||
unsigned short step_rate;
|
||||
unsigned short timer, step_rate;
|
||||
if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
|
||||
|
||||
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||
@ -817,10 +402,11 @@ ISR(TIMER1_COMPA_vect) {
|
||||
}
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
unsigned char old_OCR0A;
|
||||
// Timer interrupt for E. e_steps is set in the main routine;
|
||||
// Timer 0 is shared with millies
|
||||
ISR(TIMER0_COMPA_vect) {
|
||||
ISR(TIMER0_COMPA_vect) { stepper.advance_isr(); }
|
||||
|
||||
void Stepper::advance_isr() {
|
||||
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
|
||||
OCR0A = old_OCR0A;
|
||||
|
||||
@ -852,9 +438,10 @@ ISR(TIMER1_COMPA_vect) {
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // ADVANCE
|
||||
|
||||
void st_init() {
|
||||
void Stepper::init() {
|
||||
digipot_init(); //Initialize Digipot Motor Current
|
||||
microstep_init(); //Initialize Microstepping Pins
|
||||
|
||||
@ -944,70 +531,10 @@ void st_init() {
|
||||
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
|
||||
//endstops and pullups
|
||||
|
||||
#if HAS_X_MIN
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_XMIN)
|
||||
WRITE(X_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Y_MIN
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_YMIN)
|
||||
WRITE(Y_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_MIN
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
||||
WRITE(Z_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z2_MIN
|
||||
SET_INPUT(Z2_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
||||
WRITE(Z2_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_X_MAX
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_XMAX)
|
||||
WRITE(X_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Y_MAX
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_YMAX)
|
||||
WRITE(Y_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_MAX
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
||||
WRITE(Z_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z2_MAX
|
||||
SET_INPUT(Z2_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
||||
WRITE(Z2_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
|
||||
SET_INPUT(Z_MIN_PROBE_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
|
||||
WRITE(Z_MIN_PROBE_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
//
|
||||
// Init endstops and pullups here
|
||||
//
|
||||
endstops.init();
|
||||
|
||||
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
|
||||
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
|
||||
@ -1083,17 +610,17 @@ void st_init() {
|
||||
SBI(TIMSK0, OCIE0A);
|
||||
#endif //ADVANCE
|
||||
|
||||
enable_endstops(true); // Start with endstops active. After homing they can be disabled
|
||||
endstops.enable(true); // Start with endstops active. After homing they can be disabled
|
||||
sei();
|
||||
|
||||
set_stepper_direction(); // Init directions to out_bits = 0
|
||||
set_directions(); // Init directions to last_direction_bits = 0
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Block until all buffered steps are executed
|
||||
*/
|
||||
void st_synchronize() { while (blocks_queued()) idle(); }
|
||||
void Stepper::synchronize() { while (blocks_queued()) idle(); }
|
||||
|
||||
/**
|
||||
* Set the stepper positions directly in steps
|
||||
@ -1101,10 +628,10 @@ void st_synchronize() { while (blocks_queued()) idle(); }
|
||||
* The input is based on the typical per-axis XYZ steps.
|
||||
* For CORE machines XYZ needs to be translated to ABC.
|
||||
*
|
||||
* This allows st_get_axis_position_mm to correctly
|
||||
* This allows get_axis_position_mm to correctly
|
||||
* derive the current XYZ position later on.
|
||||
*/
|
||||
void st_set_position(const long& x, const long& y, const long& z, const long& e) {
|
||||
void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
|
||||
CRITICAL_SECTION_START;
|
||||
|
||||
#if ENABLED(COREXY)
|
||||
@ -1129,7 +656,7 @@ void st_set_position(const long& x, const long& y, const long& z, const long& e)
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
void st_set_e_position(const long& e) {
|
||||
void Stepper::set_e_position(const long& e) {
|
||||
CRITICAL_SECTION_START;
|
||||
count_position[E_AXIS] = e;
|
||||
CRITICAL_SECTION_END;
|
||||
@ -1138,7 +665,7 @@ void st_set_e_position(const long& e) {
|
||||
/**
|
||||
* Get a stepper's position in steps.
|
||||
*/
|
||||
long st_get_position(AxisEnum axis) {
|
||||
long Stepper::position(AxisEnum axis) {
|
||||
CRITICAL_SECTION_START;
|
||||
long count_pos = count_position[axis];
|
||||
CRITICAL_SECTION_END;
|
||||
@ -1149,7 +676,7 @@ long st_get_position(AxisEnum axis) {
|
||||
* Get an axis position according to stepper position(s)
|
||||
* For CORE machines apply translation from ABC to XYZ.
|
||||
*/
|
||||
float st_get_axis_position_mm(AxisEnum axis) {
|
||||
float Stepper::get_axis_position_mm(AxisEnum axis) {
|
||||
float axis_steps;
|
||||
#if ENABLED(COREXY) | ENABLED(COREXZ)
|
||||
if (axis == X_AXIS || axis == CORE_AXIS_2) {
|
||||
@ -1162,19 +689,19 @@ float st_get_axis_position_mm(AxisEnum axis) {
|
||||
axis_steps = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
|
||||
}
|
||||
else
|
||||
axis_steps = st_get_position(axis);
|
||||
axis_steps = position(axis);
|
||||
#else
|
||||
axis_steps = st_get_position(axis);
|
||||
axis_steps = position(axis);
|
||||
#endif
|
||||
return axis_steps / axis_steps_per_unit[axis];
|
||||
}
|
||||
|
||||
void finishAndDisableSteppers() {
|
||||
st_synchronize();
|
||||
void Stepper::finish_and_disable() {
|
||||
synchronize();
|
||||
disable_all_steppers();
|
||||
}
|
||||
|
||||
void quickStop() {
|
||||
void Stepper::quick_stop() {
|
||||
cleaning_buffer_counter = 5000;
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
while (blocks_queued()) plan_discard_current_block();
|
||||
@ -1182,11 +709,62 @@ void quickStop() {
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
void Stepper::endstop_triggered(AxisEnum axis) {
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
|
||||
float axis_pos = count_position[axis];
|
||||
if (axis == A_AXIS)
|
||||
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2;
|
||||
else if (axis == CORE_AXIS_2)
|
||||
axis_pos = (count_position[A_AXIS] - axis_pos) / 2;
|
||||
endstops_trigsteps[axis] = axis_pos;
|
||||
|
||||
#else // !COREXY && !COREXZ
|
||||
|
||||
endstops_trigsteps[axis] = count_position[axis];
|
||||
|
||||
#endif // !COREXY && !COREXZ
|
||||
|
||||
kill_current_block();
|
||||
}
|
||||
|
||||
void Stepper::report_positions() {
|
||||
CRITICAL_SECTION_START;
|
||||
long xpos = count_position[X_AXIS],
|
||||
ypos = count_position[Y_AXIS],
|
||||
zpos = count_position[Z_AXIS];
|
||||
CRITICAL_SECTION_END;
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
||||
#endif
|
||||
SERIAL_PROTOCOL(xpos);
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
#endif
|
||||
SERIAL_PROTOCOL(ypos);
|
||||
|
||||
#if ENABLED(COREXZ) || ENABLED(COREXZ)
|
||||
SERIAL_PROTOCOLPGM(" C:");
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
#endif
|
||||
SERIAL_PROTOCOL(zpos);
|
||||
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
#if ENABLED(BABYSTEPPING)
|
||||
|
||||
// MUST ONLY BE CALLED BY AN ISR,
|
||||
// No other ISR should ever interrupt this!
|
||||
void babystep(const uint8_t axis, const bool direction) {
|
||||
void Stepper::babystep(const uint8_t axis, const bool direction) {
|
||||
|
||||
#define _ENABLE(axis) enable_## axis()
|
||||
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
|
||||
@ -1256,10 +834,14 @@ void quickStop() {
|
||||
|
||||
#endif //BABYSTEPPING
|
||||
|
||||
/**
|
||||
* Software-controlled Stepper Motor Current
|
||||
*/
|
||||
|
||||
#if HAS_DIGIPOTSS
|
||||
|
||||
// From Arduino DigitalPotControl example
|
||||
void digitalPotWrite(int address, int value) {
|
||||
void Stepper::digitalPotWrite(int address, int value) {
|
||||
digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
|
||||
SPI.transfer(address); // send in the address and value via SPI:
|
||||
SPI.transfer(value);
|
||||
@ -1269,8 +851,7 @@ void quickStop() {
|
||||
|
||||
#endif //HAS_DIGIPOTSS
|
||||
|
||||
// Initialize Digipot Motor Current
|
||||
void digipot_init() {
|
||||
void Stepper::digipot_init() {
|
||||
#if HAS_DIGIPOTSS
|
||||
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
||||
|
||||
@ -1299,7 +880,7 @@ void digipot_init() {
|
||||
#endif
|
||||
}
|
||||
|
||||
void digipot_current(uint8_t driver, int current) {
|
||||
void Stepper::digipot_current(uint8_t driver, int current) {
|
||||
#if HAS_DIGIPOTSS
|
||||
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
|
||||
digitalPotWrite(digipot_ch[driver], current);
|
||||
@ -1322,7 +903,7 @@ void digipot_current(uint8_t driver, int current) {
|
||||
#endif
|
||||
}
|
||||
|
||||
void microstep_init() {
|
||||
void Stepper::microstep_init() {
|
||||
#if HAS_MICROSTEPS_E1
|
||||
pinMode(E1_MS1_PIN, OUTPUT);
|
||||
pinMode(E1_MS2_PIN, OUTPUT);
|
||||
@ -1343,7 +924,11 @@ void microstep_init() {
|
||||
#endif
|
||||
}
|
||||
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
||||
/**
|
||||
* Software-controlled Microstepping
|
||||
*/
|
||||
|
||||
void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
||||
if (ms1 >= 0) switch (driver) {
|
||||
case 0: digitalWrite(X_MS1_PIN, ms1); break;
|
||||
case 1: digitalWrite(Y_MS1_PIN, ms1); break;
|
||||
@ -1364,7 +949,7 @@ void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
||||
}
|
||||
}
|
||||
|
||||
void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
||||
void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
||||
switch (stepping_mode) {
|
||||
case 1: microstep_ms(driver, MICROSTEP1); break;
|
||||
case 2: microstep_ms(driver, MICROSTEP2); break;
|
||||
@ -1374,7 +959,7 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
||||
}
|
||||
}
|
||||
|
||||
void microstep_readings() {
|
||||
void Stepper::microstep_readings() {
|
||||
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
|
||||
SERIAL_PROTOCOLPGM("X: ");
|
||||
SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
|
||||
@ -1396,7 +981,7 @@ void microstep_readings() {
|
||||
}
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
void In_Homing_Process(bool state) { performing_homing = state; }
|
||||
void Lock_z_motor(bool state) { locked_z_motor = state; }
|
||||
void Lock_z2_motor(bool state) { locked_z2_motor = state; }
|
||||
void Stepper::set_homing_flag(bool state) { performing_homing = state; }
|
||||
void Stepper::set_z_lock(bool state) { locked_z_motor = state; }
|
||||
void Stepper::set_z2_lock(bool state) { locked_z2_motor = state; }
|
||||
#endif
|
||||
|
351
Marlin/stepper.h
351
Marlin/stepper.h
@ -21,90 +21,313 @@
|
||||
*/
|
||||
|
||||
/**
|
||||
stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
|
||||
Part of Grbl
|
||||
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
|
||||
* Part of Grbl
|
||||
*
|
||||
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
*
|
||||
* Grbl is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* Grbl is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef stepper_h
|
||||
#define stepper_h
|
||||
#ifndef STEPPER_H
|
||||
#define STEPPER_H
|
||||
|
||||
#include "planner.h"
|
||||
#include "speed_lookuptable.h"
|
||||
#include "stepper_indirection.h"
|
||||
#include "language.h"
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
extern bool abort_on_endstop_hit;
|
||||
#endif
|
||||
class Stepper;
|
||||
extern Stepper stepper;
|
||||
|
||||
// Initialize and start the stepper motor subsystem
|
||||
void st_init();
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 24 bit result
|
||||
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %A1, %A2 \n\t" \
|
||||
"add %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r0 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (charIn1), \
|
||||
"d" (intIn2) \
|
||||
: \
|
||||
"r26" \
|
||||
)
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize();
|
||||
class Stepper {
|
||||
|
||||
// Set current position in steps
|
||||
void st_set_position(const long& x, const long& y, const long& z, const long& e);
|
||||
void st_set_e_position(const long& e);
|
||||
public:
|
||||
|
||||
// Get current position in steps
|
||||
long st_get_position(AxisEnum axis);
|
||||
block_t* current_block = NULL; // A pointer to the block currently being traced
|
||||
|
||||
// Get current axis position in mm
|
||||
float st_get_axis_position_mm(AxisEnum axis);
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
bool abort_on_endstop_hit = false;
|
||||
#endif
|
||||
|
||||
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
||||
// to notify the subsystem that it is time to go to work.
|
||||
void st_wake_up();
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
bool performing_homing = false;
|
||||
#endif
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
long e_steps[4];
|
||||
#endif
|
||||
|
||||
void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
||||
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
|
||||
private:
|
||||
|
||||
void enable_endstops(bool check); // Enable/disable endstop checking
|
||||
unsigned char last_direction_bits = 0; // The next stepping-bits to be output
|
||||
unsigned int cleaning_buffer_counter = 0;
|
||||
|
||||
void enable_endstops_globally(bool check);
|
||||
void endstops_not_homing();
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
bool locked_z_motor = false,
|
||||
locked_z2_motor = false;
|
||||
#endif
|
||||
|
||||
void checkStepperErrors(); //Print errors detected by the stepper
|
||||
// Counter variables for the Bresenham line tracer
|
||||
long counter_X = 0, counter_Y = 0, counter_Z = 0, counter_E = 0;
|
||||
volatile unsigned long step_events_completed = 0; // The number of step events executed in the current block
|
||||
|
||||
void finishAndDisableSteppers();
|
||||
#if ENABLED(ADVANCE)
|
||||
unsigned char old_OCR0A;
|
||||
long advance_rate, advance, final_advance = 0;
|
||||
long old_advance = 0;
|
||||
#endif
|
||||
|
||||
extern block_t* current_block; // A pointer to the block currently being traced
|
||||
long acceleration_time, deceleration_time;
|
||||
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
unsigned short acc_step_rate; // needed for deceleration start point
|
||||
uint8_t step_loops;
|
||||
uint8_t step_loops_nominal;
|
||||
unsigned short OCR1A_nominal;
|
||||
|
||||
void quickStop();
|
||||
volatile long endstops_trigsteps[3];
|
||||
volatile long endstops_stepsTotal, endstops_stepsDone;
|
||||
|
||||
#if HAS_DIGIPOTSS
|
||||
void digitalPotWrite(int address, int value);
|
||||
#endif
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
|
||||
void microstep_mode(uint8_t driver, uint8_t stepping);
|
||||
void digipot_init();
|
||||
void digipot_current(uint8_t driver, int current);
|
||||
void microstep_init();
|
||||
void microstep_readings();
|
||||
#if HAS_MOTOR_CURRENT_PWM
|
||||
#ifndef PWM_MOTOR_CURRENT
|
||||
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
|
||||
#endif
|
||||
const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
|
||||
#endif
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
void In_Homing_Process(bool state);
|
||||
void Lock_z_motor(bool state);
|
||||
void Lock_z2_motor(bool state);
|
||||
#endif
|
||||
//
|
||||
// Positions of stepper motors, in step units
|
||||
//
|
||||
volatile long count_position[NUM_AXIS] = { 0 };
|
||||
|
||||
#if ENABLED(BABYSTEPPING)
|
||||
void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
|
||||
#endif
|
||||
//
|
||||
// Current direction of stepper motors (+1 or -1)
|
||||
//
|
||||
volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
|
||||
#endif
|
||||
public:
|
||||
|
||||
//
|
||||
// Constructor / initializer
|
||||
//
|
||||
Stepper() {};
|
||||
|
||||
//
|
||||
// Initialize stepper hardware
|
||||
//
|
||||
void init();
|
||||
|
||||
//
|
||||
// Interrupt Service Routines
|
||||
//
|
||||
|
||||
void isr();
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
void advance_isr();
|
||||
#endif
|
||||
|
||||
//
|
||||
// Block until all buffered steps are executed
|
||||
//
|
||||
void synchronize();
|
||||
|
||||
//
|
||||
// Set the current position in steps
|
||||
//
|
||||
void set_position(const long& x, const long& y, const long& z, const long& e);
|
||||
void set_e_position(const long& e);
|
||||
|
||||
//
|
||||
// Set direction bits for all steppers
|
||||
//
|
||||
void set_directions();
|
||||
|
||||
//
|
||||
// Get the position of a stepper, in steps
|
||||
//
|
||||
long position(AxisEnum axis);
|
||||
|
||||
//
|
||||
// Report the positions of the steppers, in steps
|
||||
//
|
||||
void report_positions();
|
||||
|
||||
//
|
||||
// Get the position (mm) of an axis based on stepper position(s)
|
||||
//
|
||||
float get_axis_position_mm(AxisEnum axis);
|
||||
|
||||
//
|
||||
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
||||
// to notify the subsystem that it is time to go to work.
|
||||
//
|
||||
void wake_up();
|
||||
|
||||
//
|
||||
// Wait for moves to finish and disable all steppers
|
||||
//
|
||||
void finish_and_disable();
|
||||
|
||||
//
|
||||
// Quickly stop all steppers and clear the blocks queue
|
||||
//
|
||||
void quick_stop();
|
||||
|
||||
//
|
||||
// The direction of a single motor
|
||||
//
|
||||
FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); }
|
||||
|
||||
#if HAS_DIGIPOTSS
|
||||
void digitalPotWrite(int address, int value);
|
||||
#endif
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
|
||||
void digipot_current(uint8_t driver, int current);
|
||||
void microstep_readings();
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
void set_homing_flag(bool state);
|
||||
void set_z_lock(bool state);
|
||||
void set_z2_lock(bool state);
|
||||
#endif
|
||||
|
||||
#if ENABLED(BABYSTEPPING)
|
||||
void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
|
||||
#endif
|
||||
|
||||
inline void kill_current_block() {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
|
||||
//
|
||||
// Handle a triggered endstop
|
||||
//
|
||||
void endstop_triggered(AxisEnum axis);
|
||||
|
||||
//
|
||||
// Triggered position of an axis in mm (not core-savvy)
|
||||
//
|
||||
FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
|
||||
return endstops_trigsteps[axis] / axis_steps_per_unit[axis];
|
||||
}
|
||||
|
||||
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||
unsigned short timer;
|
||||
|
||||
NOMORE(step_rate, MAX_STEP_FREQUENCY);
|
||||
|
||||
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||
step_rate = (step_rate >> 2) & 0x3fff;
|
||||
step_loops = 4;
|
||||
}
|
||||
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
||||
step_rate = (step_rate >> 1) & 0x7fff;
|
||||
step_loops = 2;
|
||||
}
|
||||
else {
|
||||
step_loops = 1;
|
||||
}
|
||||
|
||||
NOLESS(step_rate, F_CPU / 500000);
|
||||
step_rate -= F_CPU / 500000; // Correct for minimal speed
|
||||
if (step_rate >= (8 * 256)) { // higher step rate
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
|
||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
|
||||
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
||||
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
||||
}
|
||||
else { // lower step rates
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
||||
table_address += ((step_rate) >> 1) & 0xfffc;
|
||||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
|
||||
}
|
||||
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
|
||||
return timer;
|
||||
}
|
||||
|
||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||
// block begins.
|
||||
FORCE_INLINE void trapezoid_generator_reset() {
|
||||
|
||||
static int8_t last_extruder = -1;
|
||||
|
||||
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
|
||||
last_direction_bits = current_block->direction_bits;
|
||||
last_extruder = current_block->active_extruder;
|
||||
set_directions();
|
||||
}
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
advance = current_block->initial_advance;
|
||||
final_advance = current_block->final_advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
#endif
|
||||
deceleration_time = 0;
|
||||
// step_rate to timer interval
|
||||
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
||||
// make a note of the number of step loops required at nominal speed
|
||||
step_loops_nominal = step_loops;
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
OCR1A = acceleration_time;
|
||||
|
||||
// SERIAL_ECHO_START;
|
||||
// SERIAL_ECHOPGM("advance :");
|
||||
// SERIAL_ECHO(current_block->advance/256.0);
|
||||
// SERIAL_ECHOPGM("advance rate :");
|
||||
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
||||
// SERIAL_ECHOPGM("initial advance :");
|
||||
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||
// SERIAL_ECHOPGM("final advance :");
|
||||
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||
}
|
||||
|
||||
private:
|
||||
void microstep_mode(uint8_t driver, uint8_t stepping);
|
||||
void digipot_init();
|
||||
void microstep_init();
|
||||
|
||||
};
|
||||
|
||||
#endif // STEPPER_H
|
@ -604,7 +604,7 @@ float get_pid_output(int e) {
|
||||
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
||||
cTerm[e] = 0;
|
||||
if (e == active_extruder) {
|
||||
long e_position = st_get_position(E_AXIS);
|
||||
long e_position = stepper.position(E_AXIS);
|
||||
if (e_position > last_position[e]) {
|
||||
lpq[lpq_ptr++] = e_position - last_position[e];
|
||||
last_position[e] = e_position;
|
||||
|
@ -476,7 +476,7 @@ inline void line_to_current(AxisEnum axis) {
|
||||
static void lcd_sdcard_resume() { card.startFileprint(); }
|
||||
|
||||
static void lcd_sdcard_stop() {
|
||||
quickStop();
|
||||
stepper.quick_stop();
|
||||
card.sdprinting = false;
|
||||
card.closefile();
|
||||
autotempShutdown();
|
||||
@ -911,7 +911,7 @@ void lcd_cooldown() {
|
||||
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
||||
line_to_current(Z_AXIS);
|
||||
#endif
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
static void _lcd_level_goto_next_point();
|
||||
@ -964,7 +964,7 @@ void lcd_cooldown() {
|
||||
#endif
|
||||
;
|
||||
line_to_current(Z_AXIS);
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
mbl.active = true;
|
||||
enqueue_and_echo_commands_P(PSTR("G28"));
|
||||
|
Loading…
x
Reference in New Issue
Block a user