Merge pull request #2101 from thinkyhead/code_style
Code style and a dangling "else"
This commit is contained in:
commit
6c27eaf864
@ -1,30 +1,30 @@
|
||||
/* -*- c++ -*- */
|
||||
|
||||
/*
|
||||
Reprap firmware based on Sprinter and grbl.
|
||||
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
This firmware is a mashup between Sprinter and grbl.
|
||||
(https://github.com/kliment/Sprinter)
|
||||
(https://github.com/simen/grbl/tree)
|
||||
|
||||
It has preliminary support for Matthew Roberts advance algorithm
|
||||
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||||
/**
|
||||
* Marlin Firmware
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* About Marlin
|
||||
*
|
||||
* This firmware is a mashup between Sprinter and grbl.
|
||||
* - https://github.com/kliment/Sprinter
|
||||
* - https://github.com/simen/grbl/tree
|
||||
*
|
||||
* It has preliminary support for Matthew Roberts advance algorithm
|
||||
* - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
@ -73,13 +73,12 @@
|
||||
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
||||
*
|
||||
* Help us document these G-codes online:
|
||||
* - http://www.marlinfirmware.org/index.php/G-Code
|
||||
* - http://reprap.org/wiki/G-code
|
||||
* - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
|
||||
*/
|
||||
|
||||
/**
|
||||
*
|
||||
* -----------------
|
||||
* Implemented Codes
|
||||
* -------------------
|
||||
* -----------------
|
||||
*
|
||||
* "G" Codes
|
||||
*
|
||||
@ -163,7 +162,7 @@
|
||||
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
||||
* M206 - Set additional homing offset
|
||||
* M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
||||
* M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
|
||||
* M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
||||
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
||||
* M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
||||
* M220 - Set speed factor override percentage: S<factor in percent>
|
||||
@ -215,6 +214,11 @@
|
||||
*
|
||||
* M928 - Start SD logging (M928 filename.g) - ended by M29
|
||||
* M999 - Restart after being stopped by error
|
||||
*
|
||||
* "T" Codes
|
||||
*
|
||||
* T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
|
||||
*
|
||||
*/
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
@ -557,9 +561,9 @@ void servo_init() {
|
||||
|
||||
// Set position of Servo Endstops that are defined
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
for (int i = 0; i < 3; i++)
|
||||
if (servo_endstops[i] >= 0)
|
||||
servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
|
||||
for (int i = 0; i < 3; i++)
|
||||
if (servo_endstops[i] >= 0)
|
||||
servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
|
||||
#endif
|
||||
|
||||
#if SERVO_LEVELING
|
||||
@ -993,7 +997,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
||||
|
||||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
static void axis_is_at_home(int axis) {
|
||||
static void axis_is_at_home(AxisEnum axis) {
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (axis == X_AXIS) {
|
||||
@ -1198,12 +1202,12 @@ static void setup_for_endstop_move() {
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
|
||||
// move down until you find the bed
|
||||
// Move down until the probe (or endstop?) is triggered
|
||||
float zPosition = -10;
|
||||
line_to_z(zPosition);
|
||||
st_synchronize();
|
||||
|
||||
// we have to let the planner know where we are right now as it is not where we said to go.
|
||||
// Tell the planner where we ended up - Get this from the stepper handler
|
||||
zPosition = st_get_position_mm(Z_AXIS);
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
||||
|
||||
@ -1313,21 +1317,21 @@ static void setup_for_endstop_move() {
|
||||
|
||||
st_synchronize();
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
||||
if (z_probe_endstop)
|
||||
#else
|
||||
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
if (z_min_endstop)
|
||||
#endif
|
||||
{
|
||||
if (IsRunning()) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
|
||||
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
||||
if (z_probe_endstop)
|
||||
#else
|
||||
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
if (z_min_endstop)
|
||||
#endif
|
||||
{
|
||||
if (IsRunning()) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
|
||||
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
||||
}
|
||||
Stop();
|
||||
}
|
||||
Stop();
|
||||
}
|
||||
|
||||
#endif // Z_PROBE_ALLEN_KEY
|
||||
|
||||
@ -1390,23 +1394,23 @@ static void setup_for_endstop_move() {
|
||||
|
||||
st_synchronize();
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
||||
if (!z_probe_endstop)
|
||||
#else
|
||||
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
if (!z_min_endstop)
|
||||
#endif
|
||||
{
|
||||
if (IsRunning()) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
|
||||
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
||||
if (!z_probe_endstop)
|
||||
#else
|
||||
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
if (!z_min_endstop)
|
||||
#endif
|
||||
{
|
||||
if (IsRunning()) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
|
||||
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
||||
}
|
||||
Stop();
|
||||
}
|
||||
Stop();
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif // Z_PROBE_ALLEN_KEY
|
||||
|
||||
}
|
||||
|
||||
@ -1418,32 +1422,31 @@ static void setup_for_endstop_move() {
|
||||
};
|
||||
|
||||
// Probe bed height at position (x,y), returns the measured z value
|
||||
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
|
||||
static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
|
||||
// move to right place
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
|
||||
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
|
||||
|
||||
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
||||
if (retract_action & ProbeDeploy) deploy_z_probe();
|
||||
if (probe_action & ProbeDeploy) deploy_z_probe();
|
||||
#endif
|
||||
|
||||
run_z_probe();
|
||||
float measured_z = current_position[Z_AXIS];
|
||||
|
||||
#if Z_RAISE_BETWEEN_PROBINGS > 0
|
||||
if (retract_action == ProbeStay) {
|
||||
if (probe_action == ProbeStay) {
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
|
||||
st_synchronize();
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
||||
if (retract_action & ProbeStow) stow_z_probe();
|
||||
if (probe_action & ProbeStow) stow_z_probe();
|
||||
#endif
|
||||
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM("Bed");
|
||||
SERIAL_PROTOCOLPGM(" X: ");
|
||||
SERIAL_PROTOCOLPGM("Bed X: ");
|
||||
SERIAL_PROTOCOL_F(x, 3);
|
||||
SERIAL_PROTOCOLPGM(" Y: ");
|
||||
SERIAL_PROTOCOL_F(y, 3);
|
||||
@ -1593,12 +1596,11 @@ static void homeaxis(AxisEnum axis) {
|
||||
if (axis == Z_AXIS) {
|
||||
if (axis_home_dir < 0) deploy_z_probe();
|
||||
}
|
||||
else
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
{
|
||||
if (axis != Z_AXIS) {
|
||||
// Engage Servo endstop if enabled
|
||||
if (servo_endstops[axis] > -1)
|
||||
servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
||||
@ -2763,8 +2765,8 @@ inline void gcode_G28() {
|
||||
z_tmp = current_position[Z_AXIS],
|
||||
real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
||||
|
||||
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
||||
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
||||
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
|
||||
current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
|
||||
sync_plan_position();
|
||||
}
|
||||
#endif // !DELTA
|
||||
@ -2792,8 +2794,7 @@ inline void gcode_G28() {
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
|
||||
run_z_probe();
|
||||
SERIAL_PROTOCOLPGM("Bed");
|
||||
SERIAL_PROTOCOLPGM(" X: ");
|
||||
SERIAL_PROTOCOLPGM("Bed X: ");
|
||||
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
|
||||
SERIAL_PROTOCOLPGM(" Y: ");
|
||||
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
|
||||
@ -4624,7 +4625,7 @@ inline void gcode_M400() { st_synchronize(); }
|
||||
stow_z_probe(false);
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
|
||||
@ -4819,7 +4820,7 @@ inline void gcode_M503() {
|
||||
if (code_seen('Z')) {
|
||||
value = code_value();
|
||||
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
|
||||
zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
|
||||
zprobe_zoffset = -value;
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
|
||||
SERIAL_EOL;
|
||||
@ -5074,9 +5075,11 @@ inline void gcode_M999() {
|
||||
|
||||
/**
|
||||
* T0-T3: Switch tool, usually switching extruders
|
||||
*
|
||||
* F[mm/min] Set the movement feedrate
|
||||
*/
|
||||
inline void gcode_T() {
|
||||
int tmp_extruder = code_value();
|
||||
uint16_t tmp_extruder = code_value_short();
|
||||
if (tmp_extruder >= EXTRUDERS) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_CHAR('T');
|
||||
@ -5589,14 +5592,14 @@ void process_next_command() {
|
||||
gcode_M400();
|
||||
break;
|
||||
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
|
||||
case 401:
|
||||
gcode_M401();
|
||||
break;
|
||||
case 402:
|
||||
gcode_M402();
|
||||
break;
|
||||
#endif
|
||||
#endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
||||
@ -6089,82 +6092,83 @@ void prepare_move() {
|
||||
#endif // HAS_CONTROLLERFAN
|
||||
|
||||
#ifdef SCARA
|
||||
void calculate_SCARA_forward_Transform(float f_scara[3])
|
||||
{
|
||||
// Perform forward kinematics, and place results in delta[3]
|
||||
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
||||
|
||||
float x_sin, x_cos, y_sin, y_cos;
|
||||
|
||||
|
||||
void calculate_SCARA_forward_Transform(float f_scara[3]) {
|
||||
// Perform forward kinematics, and place results in delta[3]
|
||||
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
||||
|
||||
float x_sin, x_cos, y_sin, y_cos;
|
||||
|
||||
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
|
||||
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
|
||||
|
||||
|
||||
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
|
||||
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
|
||||
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
|
||||
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
|
||||
|
||||
// SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
|
||||
// SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
|
||||
// SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
|
||||
// SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
|
||||
|
||||
|
||||
//SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
|
||||
//SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
|
||||
//SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
|
||||
//SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
|
||||
|
||||
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
|
||||
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
|
||||
|
||||
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
|
||||
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
||||
}
|
||||
}
|
||||
|
||||
void calculate_delta(float cartesian[3]){
|
||||
//reverse kinematics.
|
||||
// Perform reversed kinematics, and place results in delta[3]
|
||||
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
||||
|
||||
float SCARA_pos[2];
|
||||
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
|
||||
|
||||
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
||||
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
||||
|
||||
#if (Linkage_1 == Linkage_2)
|
||||
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
|
||||
#else
|
||||
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
|
||||
#endif
|
||||
|
||||
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
|
||||
|
||||
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
|
||||
SCARA_K2 = Linkage_2 * SCARA_S2;
|
||||
|
||||
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
|
||||
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
|
||||
|
||||
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
||||
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
||||
delta[Z_AXIS] = cartesian[Z_AXIS];
|
||||
|
||||
/*
|
||||
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
|
||||
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
|
||||
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
|
||||
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
|
||||
SERIAL_ECHOLN(" ");*/
|
||||
}
|
||||
void calculate_delta(float cartesian[3]){
|
||||
//reverse kinematics.
|
||||
// Perform reversed kinematics, and place results in delta[3]
|
||||
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
||||
|
||||
float SCARA_pos[2];
|
||||
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
|
||||
|
||||
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
||||
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
||||
|
||||
#if (Linkage_1 == Linkage_2)
|
||||
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
|
||||
#else
|
||||
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
|
||||
#endif
|
||||
|
||||
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
|
||||
|
||||
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
|
||||
SCARA_K2 = Linkage_2 * SCARA_S2;
|
||||
|
||||
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
|
||||
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
|
||||
|
||||
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
||||
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
||||
delta[Z_AXIS] = cartesian[Z_AXIS];
|
||||
|
||||
/*
|
||||
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
|
||||
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
|
||||
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
|
||||
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
|
||||
SERIAL_EOL;
|
||||
*/
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif // SCARA
|
||||
|
||||
#ifdef TEMP_STAT_LEDS
|
||||
|
||||
@ -6395,7 +6399,78 @@ void kill()
|
||||
st_synchronize();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // FILAMENT_RUNOUT_SENSOR
|
||||
|
||||
#ifdef FAST_PWM_FAN
|
||||
|
||||
void setPwmFrequency(uint8_t pin, int val) {
|
||||
val &= 0x07;
|
||||
switch (digitalPinToTimer(pin)) {
|
||||
|
||||
#if defined(TCCR0A)
|
||||
case TIMER0A:
|
||||
case TIMER0B:
|
||||
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
||||
// TCCR0B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR1A)
|
||||
case TIMER1A:
|
||||
case TIMER1B:
|
||||
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
||||
// TCCR1B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR2)
|
||||
case TIMER2:
|
||||
case TIMER2:
|
||||
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
||||
TCCR2 |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR2A)
|
||||
case TIMER2A:
|
||||
case TIMER2B:
|
||||
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
||||
TCCR2B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR3A)
|
||||
case TIMER3A:
|
||||
case TIMER3B:
|
||||
case TIMER3C:
|
||||
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
||||
TCCR3B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR4A)
|
||||
case TIMER4A:
|
||||
case TIMER4B:
|
||||
case TIMER4C:
|
||||
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
||||
TCCR4B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR5A)
|
||||
case TIMER5A:
|
||||
case TIMER5B:
|
||||
case TIMER5C:
|
||||
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
||||
TCCR5B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif // FAST_PWM_FAN
|
||||
|
||||
void Stop() {
|
||||
disable_all_heaters();
|
||||
@ -6408,76 +6483,6 @@ void Stop() {
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef FAST_PWM_FAN
|
||||
void setPwmFrequency(uint8_t pin, int val)
|
||||
{
|
||||
val &= 0x07;
|
||||
switch(digitalPinToTimer(pin))
|
||||
{
|
||||
|
||||
#if defined(TCCR0A)
|
||||
case TIMER0A:
|
||||
case TIMER0B:
|
||||
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
||||
// TCCR0B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR1A)
|
||||
case TIMER1A:
|
||||
case TIMER1B:
|
||||
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
||||
// TCCR1B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR2)
|
||||
case TIMER2:
|
||||
case TIMER2:
|
||||
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
||||
TCCR2 |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR2A)
|
||||
case TIMER2A:
|
||||
case TIMER2B:
|
||||
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
||||
TCCR2B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR3A)
|
||||
case TIMER3A:
|
||||
case TIMER3B:
|
||||
case TIMER3C:
|
||||
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
||||
TCCR3B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR4A)
|
||||
case TIMER4A:
|
||||
case TIMER4B:
|
||||
case TIMER4C:
|
||||
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
||||
TCCR4B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if defined(TCCR5A)
|
||||
case TIMER5A:
|
||||
case TIMER5B:
|
||||
case TIMER5C:
|
||||
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
||||
TCCR5B |= val;
|
||||
break;
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
#endif //FAST_PWM_FAN
|
||||
|
||||
bool setTargetedHotend(int code){
|
||||
target_extruder = active_extruder;
|
||||
if (code_seen('T')) {
|
||||
|
@ -1,22 +1,23 @@
|
||||
/*
|
||||
stepper.c - stepper motor driver: executes motion plans using stepper motors
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/**
|
||||
* stepper.cpp - stepper motor driver: executes motion plans using stepper motors
|
||||
* Marlin Firmware
|
||||
*
|
||||
* Derived from Grbl
|
||||
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
*
|
||||
* Grbl is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* Grbl is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
|
||||
and Philipp Tiefenbacher. */
|
||||
@ -1109,9 +1110,8 @@ long st_get_position(uint8_t axis) {
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
float st_get_position_mm(uint8_t axis) {
|
||||
float steper_position_in_steps = st_get_position(axis);
|
||||
return steper_position_in_steps / axis_steps_per_unit[axis];
|
||||
float st_get_position_mm(AxisEnum axis) {
|
||||
return st_get_position(axis) / axis_steps_per_unit[axis];
|
||||
}
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
@ -67,9 +67,9 @@ void st_set_e_position(const long &e);
|
||||
long st_get_position(uint8_t axis);
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
// Get current position in mm
|
||||
float st_get_position_mm(uint8_t axis);
|
||||
#endif //ENABLE_AUTO_BED_LEVELING
|
||||
// Get current position in mm
|
||||
float st_get_position_mm(AxisEnum axis);
|
||||
#endif
|
||||
|
||||
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
||||
// to notify the subsystem that it is time to go to work.
|
||||
|
Loading…
Reference in New Issue
Block a user