Cleanup some vars, use of min/max

This commit is contained in:
Scott Lahteine 2016-10-02 04:38:17 -05:00
parent d19cfcfc1d
commit 761593b74b
2 changed files with 19 additions and 24 deletions

View File

@ -150,33 +150,31 @@ void Planner::init() {
* by the provided factors.
*/
void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
unsigned long initial_rate = ceil(block->nominal_rate * entry_factor),
final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
uint32_t initial_rate = ceil(block->nominal_rate * entry_factor),
final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
// Limit minimal step rate (Otherwise the timer will overflow.)
NOLESS(initial_rate, 120);
NOLESS(final_rate, 120);
long accel = block->acceleration_steps_per_s2;
int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
int32_t accel = block->acceleration_steps_per_s2,
accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort accel and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
plateau_steps = 0;
}
#if ENABLED(ADVANCE)
volatile long initial_advance = block->advance * sq(entry_factor);
volatile long final_advance = block->advance * sq(exit_factor);
volatile int32_t initial_advance = block->advance * sq(entry_factor),
final_advance = block->advance * sq(exit_factor);
#endif // ADVANCE
// block->accelerate_until = accelerate_steps;
@ -266,7 +264,7 @@ void Planner::forward_pass_kernel(block_t* previous, block_t* current) {
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!previous->nominal_length_flag) {
if (previous->entry_speed < current->entry_speed) {
double entry_speed = min(current->entry_speed,
float entry_speed = min(current->entry_speed,
max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
// Check for junction speed change
if (current->entry_speed != entry_speed) {
@ -982,15 +980,13 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
#endif
// Calculate and limit speed in mm/sec for each axis
float current_speed[NUM_AXIS];
float speed_factor = 1.0; //factor <=1 do decrease speed
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
LOOP_XYZE(i) {
current_speed[i] = delta_mm[i] * inverse_mm_s;
float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
if (cs > mf) speed_factor = min(speed_factor, mf / cs);
float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s);
if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
}
// Max segement time in us.
// Max segment time in µs.
#ifdef XY_FREQUENCY_LIMIT
// Check and limit the xy direction change frequency
@ -1024,7 +1020,7 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
if (min_xy_segment_time < MAX_FREQ_TIME) {
float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
speed_factor = min(speed_factor, low_sf);
NOMORE(speed_factor, low_sf);
}
#endif // XY_FREQUENCY_LIMIT
@ -1091,8 +1087,7 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
if (cos_theta > -0.95) {
// Compute maximum junction velocity based on maximum acceleration and junction deviation
double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
vmax_junction = min(vmax_junction,
sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
NOMORE(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
}
}
}
@ -1125,7 +1120,7 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
// Initialize planner efficiency flags

View File

@ -265,8 +265,8 @@ uint8_t Temperature::soft_pwm[HOTENDS];
#endif
;
max = max(max, input);
min = min(min, input);
NOLESS(max, input);
NOMORE(min, input);
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) {