diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp index 847e516f4..0bae98391 100644 --- a/Marlin/G26_Mesh_Validation_Tool.cpp +++ b/Marlin/G26_Mesh_Validation_Tool.cpp @@ -135,54 +135,44 @@ float code_value_axis_units(const AxisEnum axis); bool code_value_bool(); bool code_has_value(); - void lcd_init(); - void lcd_setstatuspgm(const char* const message, const uint8_t level); void sync_plan_position_e(); void chirp_at_user(); // Private functions - void un_retract_filament(float where[XYZE]); - void retract_filament(float where[XYZE]); - bool look_for_lines_to_connect(); - bool parse_G26_parameters(); - void move_to(const float&, const float&, const float&, const float&) ; - void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&); - bool turn_on_heaters(); - bool prime_nozzle(); - static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16]; float g26_e_axis_feedrate = 0.020, - random_deviation = 0.0, - layer_height = LAYER_HEIGHT; + random_deviation = 0.0; static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched // retracts/recovers won't result in a bad state. float valid_trig_angle(float); - mesh_index_pair find_closest_circle_to_print(const float&, const float&); - static float extrusion_multiplier = EXTRUSION_MULTIPLIER, - retraction_multiplier = RETRACTION_MULTIPLIER, - nozzle = NOZZLE, - filament_diameter = FILAMENT, - prime_length = PRIME_LENGTH, - x_pos, y_pos, - ooze_amount = OOZE_AMOUNT; + float unified_bed_leveling::g26_extrusion_multiplier, + unified_bed_leveling::g26_retraction_multiplier, + unified_bed_leveling::g26_nozzle, + unified_bed_leveling::g26_filament_diameter, + unified_bed_leveling::g26_layer_height, + unified_bed_leveling::g26_prime_length, + unified_bed_leveling::g26_x_pos, + unified_bed_leveling::g26_y_pos, + unified_bed_leveling::g26_ooze_amount; - static int16_t bed_temp = BED_TEMP, - hotend_temp = HOTEND_TEMP; + int16_t unified_bed_leveling::g26_bed_temp, + unified_bed_leveling::g26_hotend_temp; - static int8_t prime_flag = 0; + int8_t unified_bed_leveling::g26_prime_flag; - static bool continue_with_closest, keep_heaters_on; + bool unified_bed_leveling::g26_continue_with_closest, + unified_bed_leveling::g26_keep_heaters_on; - static int16_t g26_repeats; + int16_t unified_bed_leveling::g26_repeats; - void G26_line_to_destination(const float &feed_rate) { + void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) { const float save_feedrate = feedrate_mm_s; feedrate_mm_s = feed_rate; // use specified feed rate - prepare_move_to_destination(); // will ultimately call ubl_line_to_destination_cartesian or ubl_prepare_linear_move_to for UBL_DELTA + prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA feedrate_mm_s = save_feedrate; // restore global feed rate } @@ -216,7 +206,7 @@ * Used to interactively edit UBL's Mesh by placing the * nozzle in a problem area and doing a G29 P4 R command. */ - void gcode_G26() { + void unified_bed_leveling::G26() { SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s)."); float tmp, start_angle, end_angle; int i, xi, yi; @@ -237,7 +227,7 @@ current_position[E_AXIS] = 0.0; sync_plan_position_e(); - if (prime_flag && prime_nozzle()) goto LEAVE; + if (g26_prime_flag && prime_nozzle()) goto LEAVE; /** * Bed is preheated @@ -255,11 +245,11 @@ // Move nozzle to the specified height for the first layer set_destination_to_current(); - destination[Z_AXIS] = layer_height; + destination[Z_AXIS] = g26_layer_height; move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); - move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount); + move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], g26_ooze_amount); - ubl.has_control_of_lcd_panel = true; + has_control_of_lcd_panel = true; //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); /** @@ -273,13 +263,13 @@ } do { - location = continue_with_closest + location = g26_continue_with_closest ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) - : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now. + : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now. if (location.x_index >= 0 && location.y_index >= 0) { - const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), - circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); + const float circle_x = mesh_index_to_xpos(location.x_index), + circle_y = mesh_index_to_ypos(location.y_index); // If this mesh location is outside the printable_radius, skip it. @@ -288,7 +278,7 @@ xi = location.x_index; // Just to shrink the next few lines and make them easier to understand yi = location.y_index; - if (ubl.g26_debug_flag) { + if (g26_debug_flag) { SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(", yi=", yi); SERIAL_CHAR(')'); @@ -344,7 +334,7 @@ ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif - //if (ubl.g26_debug_flag) { + //if (g26_debug_flag) { // char ccc, *cptr, seg_msg[50], seg_num[10]; // strcpy(seg_msg, " segment: "); // strcpy(seg_num, " \n"); @@ -355,7 +345,7 @@ // debug_current_and_destination(seg_msg); //} - print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height); + print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height); } if (look_for_lines_to_connect()) @@ -374,16 +364,16 @@ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle //debug_current_and_destination(PSTR("done doing Z-Raise.")); - destination[X_AXIS] = x_pos; // Move back to the starting position - destination[Y_AXIS] = y_pos; + destination[X_AXIS] = g26_x_pos; // Move back to the starting position + destination[Y_AXIS] = g26_y_pos; //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position //debug_current_and_destination(PSTR("done doing X/Y move.")); - ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel! + has_control_of_lcd_panel = false; // Give back control of the LCD Panel! - if (!keep_heaters_on) { + if (!g26_keep_heaters_on) { #if HAS_TEMP_BED thermalManager.setTargetBed(0); #endif @@ -391,14 +381,13 @@ } } - float valid_trig_angle(float d) { while (d > 360.0) d -= 360.0; while (d < 0.0) d += 360.0; return d; } - mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) { + mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) { float closest = 99999.99; mesh_index_pair return_val; @@ -407,8 +396,8 @@ for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { if (!is_bit_set(circle_flags, i, j)) { - const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed - my = pgm_read_float(&ubl.mesh_index_to_ypos[j]); + const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed + my = mesh_index_to_ypos(j); // Get the distance to this intersection float f = HYPOT(X - mx, Y - my); @@ -417,7 +406,7 @@ // to let us find the closest circle to the start position. // But if this is not the case, add a small weighting to the // distance calculation to help it choose a better place to continue. - f += HYPOT(x_pos - mx, y_pos - my) / 15.0; + f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0; // Add in the specified amount of Random Noise to our search if (random_deviation > 1.0) @@ -436,7 +425,7 @@ return return_val; } - bool look_for_lines_to_connect() { + bool unified_bed_leveling::look_for_lines_to_connect() { float sx, sy, ex, ey; for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { @@ -454,16 +443,16 @@ // We found two circles that need a horizontal line to connect them // Print it! // - sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge - ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge + sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge + ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); - sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1); + sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) { - if (ubl.g26_debug_flag) { + if (g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); @@ -473,7 +462,7 @@ //debug_current_and_destination(PSTR("Connecting horizontal line.")); } - print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); + print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height); } bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it } @@ -488,16 +477,16 @@ // We found two circles that need a vertical line to connect them // Print it! // - sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge - ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge + sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge + ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge - sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1); + sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1); sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) { - if (ubl.g26_debug_flag) { + if (g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); @@ -506,7 +495,7 @@ SERIAL_EOL; debug_current_and_destination(PSTR("Connecting vertical line.")); } - print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); + print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height); } bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped } @@ -518,7 +507,7 @@ return false; } - void move_to(const float &x, const float &y, const float &z, const float &e_delta) { + void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) { float feed_value; static float last_z = -999.99; @@ -540,10 +529,10 @@ } // Check if X or Y is involved in the movement. - // Yes: a 'normal' movement. No: a retract() or un_retract() + // Yes: a 'normal' movement. No: a retract() or recover() feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; - if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); + if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); destination[X_AXIS] = x; destination[Y_AXIS] = y; @@ -556,16 +545,16 @@ } - void retract_filament(float where[XYZE]) { + void unified_bed_leveling::retract_filament(float where[XYZE]) { if (!g26_retracted) { // Only retract if we are not already retracted! g26_retracted = true; - move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier); + move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * g26_retraction_multiplier); } } - void un_retract_filament(float where[XYZE]) { + void unified_bed_leveling::recover_filament(float where[XYZE]) { if (g26_retracted) { // Only un-retract if we are retracted. - move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier); + move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * g26_retraction_multiplier); g26_retracted = false; } } @@ -585,7 +574,7 @@ * segment of a 'circle'. The time this requires is very short and is easily saved by the other * cases where the optimization comes into play. */ - void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { + void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment dy_s = current_position[Y_AXIS] - sy, dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 @@ -613,9 +602,9 @@ move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump - const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier; + const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier; - un_retract_filament(destination); + recover_filament(destination); move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion } @@ -624,33 +613,33 @@ * parameters it made sense to turn them into static globals and get * this code out of sight of the main routine. */ - bool parse_G26_parameters() { + bool unified_bed_leveling::parse_G26_parameters() { - extrusion_multiplier = EXTRUSION_MULTIPLIER; - retraction_multiplier = RETRACTION_MULTIPLIER; - nozzle = NOZZLE; - filament_diameter = FILAMENT; - layer_height = LAYER_HEIGHT; - prime_length = PRIME_LENGTH; - bed_temp = BED_TEMP; - hotend_temp = HOTEND_TEMP; - prime_flag = 0; + g26_extrusion_multiplier = EXTRUSION_MULTIPLIER; + g26_retraction_multiplier = RETRACTION_MULTIPLIER; + g26_nozzle = NOZZLE; + g26_filament_diameter = FILAMENT; + g26_layer_height = LAYER_HEIGHT; + g26_prime_length = PRIME_LENGTH; + g26_bed_temp = BED_TEMP; + g26_hotend_temp = HOTEND_TEMP; + g26_prime_flag = 0; - ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT; - keep_heaters_on = code_seen('K') && code_value_bool(); - continue_with_closest = code_seen('C') && code_value_bool(); + g26_ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT; + g26_keep_heaters_on = code_seen('K') && code_value_bool(); + g26_continue_with_closest = code_seen('C') && code_value_bool(); if (code_seen('B')) { - bed_temp = code_value_temp_abs(); - if (!WITHIN(bed_temp, 15, 140)) { + g26_bed_temp = code_value_temp_abs(); + if (!WITHIN(g26_bed_temp, 15, 140)) { SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); return UBL_ERR; } } if (code_seen('L')) { - layer_height = code_value_linear_units(); - if (!WITHIN(layer_height, 0.0, 2.0)) { + g26_layer_height = code_value_linear_units(); + if (!WITHIN(g26_layer_height, 0.0, 2.0)) { SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); return UBL_ERR; } @@ -658,8 +647,8 @@ if (code_seen('Q')) { if (code_has_value()) { - retraction_multiplier = code_value_float(); - if (!WITHIN(retraction_multiplier, 0.05, 15.0)) { + g26_retraction_multiplier = code_value_float(); + if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) { SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); return UBL_ERR; } @@ -671,8 +660,8 @@ } if (code_seen('S')) { - nozzle = code_value_float(); - if (!WITHIN(nozzle, 0.1, 1.0)) { + g26_nozzle = code_value_float(); + if (!WITHIN(g26_nozzle, 0.1, 1.0)) { SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); return UBL_ERR; } @@ -680,11 +669,11 @@ if (code_seen('P')) { if (!code_has_value()) - prime_flag = -1; + g26_prime_flag = -1; else { - prime_flag++; - prime_length = code_value_linear_units(); - if (!WITHIN(prime_length, 0.0, 25.0)) { + g26_prime_flag++; + g26_prime_length = code_value_linear_units(); + if (!WITHIN(g26_prime_length, 0.0, 25.0)) { SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); return UBL_ERR; } @@ -692,21 +681,21 @@ } if (code_seen('F')) { - filament_diameter = code_value_linear_units(); - if (!WITHIN(filament_diameter, 1.0, 4.0)) { + g26_filament_diameter = code_value_linear_units(); + if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) { SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); return UBL_ERR; } } - extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to + g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to // scale up or down the length needed to get the // same volume of filament - extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size + g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size if (code_seen('H')) { - hotend_temp = code_value_temp_abs(); - if (!WITHIN(hotend_temp, 165, 280)) { + g26_hotend_temp = code_value_temp_abs(); + if (!WITHIN(g26_hotend_temp, 165, 280)) { SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); return UBL_ERR; } @@ -723,9 +712,9 @@ return UBL_ERR; } - x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS]; - y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS]; - if (!position_is_reachable_xy(x_pos, y_pos)) { + g26_x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS]; + g26_y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS]; + if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) { SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds."); return UBL_ERR; } @@ -733,12 +722,12 @@ /** * Wait until all parameters are verified before altering the state! */ - ubl.state.active = !code_seen('D'); + state.active = !code_seen('D'); return UBL_OK; } - bool exit_from_g26() { + bool unified_bed_leveling::exit_from_g26() { lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("Leaving G26")); while (ubl_lcd_clicked()) idle(); @@ -749,18 +738,18 @@ * Turn on the bed and nozzle heat and * wait for them to get up to temperature. */ - bool turn_on_heaters() { + bool unified_bed_leveling::turn_on_heaters() { millis_t next; #if HAS_TEMP_BED #if ENABLED(ULTRA_LCD) - if (bed_temp > 25) { + if (g26_bed_temp > 25) { lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99); lcd_quick_feedback(); #endif - ubl.has_control_of_lcd_panel = true; - thermalManager.setTargetBed(bed_temp); + has_control_of_lcd_panel = true; + thermalManager.setTargetBed(g26_bed_temp); next = millis() + 5000UL; - while (abs(thermalManager.degBed() - bed_temp) > 3) { + while (abs(thermalManager.degBed() - g26_bed_temp) > 3) { if (ubl_lcd_clicked()) return exit_from_g26(); if (PENDING(millis(), next)) { next = millis() + 5000UL; @@ -776,8 +765,8 @@ #endif // Start heating the nozzle and wait for it to reach temperature. - thermalManager.setTargetHotend(hotend_temp, 0); - while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) { + thermalManager.setTargetHotend(g26_hotend_temp, 0); + while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) { if (ubl_lcd_clicked()) return exit_from_g26(); if (PENDING(millis(), next)) { next = millis() + 5000UL; @@ -798,19 +787,19 @@ /** * Prime the nozzle if needed. Return true on error. */ - bool prime_nozzle() { + bool unified_bed_leveling::prime_nozzle() { float Total_Prime = 0.0; - if (prime_flag == -1) { // The user wants to control how much filament gets purged + if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged - ubl.has_control_of_lcd_panel = true; + has_control_of_lcd_panel = true; lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99); chirp_at_user(); set_destination_to_current(); - un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted(). + recover_filament(destination); // Make sure G26 doesn't think the filament is retracted(). while (!ubl_lcd_clicked()) { chirp_at_user(); @@ -838,7 +827,7 @@ lcd_quick_feedback(); #endif - ubl.has_control_of_lcd_panel = false; + has_control_of_lcd_panel = false; } else { @@ -847,7 +836,7 @@ lcd_quick_feedback(); #endif set_destination_to_current(); - destination[E_AXIS] += prime_length; + destination[E_AXIS] += g26_prime_length; G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); stepper.synchronize(); set_destination_to_current(); diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 5e43a01e9..bf88d8abd 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -3416,8 +3416,8 @@ inline void gcode_G7( return; } - destination[X_AXIS] = hasI ? pgm_read_float(&ubl.mesh_index_to_xpos[ix]) : current_position[X_AXIS]; - destination[Y_AXIS] = hasJ ? pgm_read_float(&ubl.mesh_index_to_ypos[iy]) : current_position[Y_AXIS]; + destination[X_AXIS] = hasI ? ubl.mesh_index_to_xpos(ix) : current_position[X_AXIS]; + destination[Y_AXIS] = hasJ ? ubl.mesh_index_to_ypos(iy) : current_position[Y_AXIS]; destination[Z_AXIS] = current_position[Z_AXIS]; //todo: perhaps add Z-move support? destination[E_AXIS] = current_position[E_AXIS]; @@ -8704,7 +8704,7 @@ void quickstop_stepper() { const bool hasZ = code_seen('Z'), hasQ = !hasZ && code_seen('Q'); if (hasC) { - const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false); + const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false); ix = location.x_index; iy = location.y_index; } @@ -11467,7 +11467,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { #if ENABLED(AUTO_BED_LEVELING_UBL) const float fr_scaled = MMS_SCALED(feedrate_mm_s); if (ubl.state.active) { - ubl_line_to_destination_cartesian(fr_scaled, active_extruder); + ubl.line_to_destination_cartesian(fr_scaled, active_extruder); return true; } else @@ -11612,14 +11612,14 @@ void prepare_move_to_destination() { if ( #if IS_KINEMATIC #if UBL_DELTA - ubl_prepare_linear_move_to(destination, feedrate_mm_s) + ubl.prepare_linear_move_to(destination, feedrate_mm_s) #else prepare_kinematic_move_to(destination) #endif #elif ENABLED(DUAL_X_CARRIAGE) prepare_move_to_destination_dualx() #elif UBL_DELTA // will work for CARTESIAN too (smaller segments follow mesh more closely) - ubl_prepare_linear_move_to(destination, feedrate_mm_s) + ubl.prepare_linear_move_to(destination, feedrate_mm_s) #else prepare_move_to_destination_cartesian() #endif diff --git a/Marlin/fastio.h b/Marlin/fastio.h index 430a06626..402e1ba49 100644 --- a/Marlin/fastio.h +++ b/Marlin/fastio.h @@ -58,7 +58,7 @@ #endif #ifndef _BV - #define _BV(PIN) (1 << PIN) + #define _BV(PIN) (1UL << PIN) #endif /** diff --git a/Marlin/ubl.cpp b/Marlin/ubl.cpp index 8e6190953..cdfc401ad 100644 --- a/Marlin/ubl.cpp +++ b/Marlin/ubl.cpp @@ -69,8 +69,8 @@ // 15 is the maximum nubmer of grid points supported + 1 safety margin for now, // until determinism prevails - constexpr float unified_bed_leveling::mesh_index_to_xpos[16], - unified_bed_leveling::mesh_index_to_ypos[16]; + constexpr float unified_bed_leveling::_mesh_index_to_xpos[16], + unified_bed_leveling::_mesh_index_to_ypos[16]; bool unified_bed_leveling::g26_debug_flag = false, unified_bed_leveling::has_control_of_lcd_panel = false; @@ -117,8 +117,8 @@ SERIAL_EOL; } - const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0), - current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0); + const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0), + current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0); for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) { for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { diff --git a/Marlin/ubl.h b/Marlin/ubl.h index b1a6b9f7e..028eff52f 100644 --- a/Marlin/ubl.h +++ b/Marlin/ubl.h @@ -53,30 +53,16 @@ // ubl_motion.cpp void debug_current_and_destination(const char * const title); - void ubl_line_to_destination_cartesian(const float&, uint8_t); - bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate ); // ubl_G29.cpp enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; - void dump(char * const str, const float &f); - void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); - float measure_business_card_thickness(float&); - mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool); - void shift_mesh_height(); - void fine_tune_mesh(const float&, const float&, const bool); - bool g29_parameter_parsing(); - void g29_eeprom_dump(); - void g29_compare_current_mesh_to_stored_mesh(); - // External references char *ftostr43sign(const float&, char); bool ubl_lcd_clicked(); void home_all_axes(); - void gcode_G26(); - void gcode_G29(); extern uint8_t ubl_cnt; @@ -101,26 +87,81 @@ static float last_specified_z; + static int g29_verbose_level, + g29_phase_value, + g29_repetition_cnt, + g29_storage_slot, + g29_map_type, + g29_grid_size; + static bool g29_c_flag, g29_x_flag, g29_y_flag; + static float g29_x_pos, g29_y_pos, + g29_card_thickness, + g29_constant; + + #if ENABLED(UBL_G26_MESH_VALIDATION) + static float g26_extrusion_multiplier, + g26_retraction_multiplier, + g26_nozzle, + g26_filament_diameter, + g26_prime_length, + g26_x_pos, g26_y_pos, + g26_ooze_amount, + g26_layer_height; + static int16_t g26_bed_temp, + g26_hotend_temp, + g26_repeats; + static int8_t g26_prime_flag; + static bool g26_continue_with_closest, g26_keep_heaters_on; + #endif + + static float measure_point_with_encoder(); + static float measure_business_card_thickness(float&); + static bool g29_parameter_parsing(); + static void find_mean_mesh_height(); + static void shift_mesh_height(); + static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest); + static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); + static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); + static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); + static void g29_what_command(); + static void g29_eeprom_dump(); + static void g29_compare_current_mesh_to_stored_mesh(); + static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map); + static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir); + static void smart_fill_mesh(); + + #if ENABLED(UBL_G26_MESH_VALIDATION) + static bool exit_from_g26(); + static bool parse_G26_parameters(); + static void G26_line_to_destination(const float &feed_rate); + static mesh_index_pair find_closest_circle_to_print(const float&, const float&); + static bool look_for_lines_to_connect(); + static bool turn_on_heaters(); + static bool prime_nozzle(); + static void retract_filament(float where[XYZE]); + static void recover_filament(float where[XYZE]); + static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&); + static void move_to(const float&, const float&, const float&, const float&); + #endif + public: - void echo_name(); - void report_state(); - void find_mean_mesh_height(); - void shift_mesh_height(); - void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest); - void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); - void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); - void save_ubl_active_state_and_disable(); - void restore_ubl_active_state_and_leave(); - void g29_what_command(); - void g29_eeprom_dump(); - void g29_compare_current_mesh_to_stored_mesh(); - void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map); - void smart_fill_mesh(); - void display_map(const int); - void reset(); - void invalidate(); - bool sanity_check(); + static void echo_name(); + static void report_state(); + static void save_ubl_active_state_and_disable(); + static void restore_ubl_active_state_and_leave(); + static void display_map(const int); + static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool); + static void reset(); + static void invalidate(); + static bool sanity_check(); + + static void G29() _O0; // O0 for no optimization + static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560 + + #if ENABLED(UBL_G26_MESH_VALIDATION) + static void G26(); + #endif static ubl_state state; @@ -128,7 +169,7 @@ // 15 is the maximum nubmer of grid points supported + 1 safety margin for now, // until determinism prevails - constexpr static float mesh_index_to_xpos[16] PROGMEM = { + constexpr static float _mesh_index_to_xpos[16] PROGMEM = { UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST), UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST), UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST), @@ -139,7 +180,7 @@ UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST) }; - constexpr static float mesh_index_to_ypos[16] PROGMEM = { + constexpr static float _mesh_index_to_ypos[16] PROGMEM = { UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST), @@ -156,16 +197,16 @@ unified_bed_leveling(); - FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } + FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } - int8_t get_cell_index_x(const float &x) { + static int8_t get_cell_index_x(const float &x) { const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX } // position. But with this defined this way, it is possible // to extrapolate off of this point even further out. Probably // that is OK because something else should be keeping that from // happening and should not be worried about at this level. - int8_t get_cell_index_y(const float &y) { + static int8_t get_cell_index_y(const float &y) { const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX } // position. But with this defined this way, it is possible @@ -173,12 +214,12 @@ // that is OK because something else should be keeping that from // happening and should not be worried about at this level. - int8_t find_closest_x_index(const float &x) { + static int8_t find_closest_x_index(const float &x) { const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; } - int8_t find_closest_y_index(const float &y) { + static int8_t find_closest_y_index(const float &y) { const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; } @@ -198,7 +239,7 @@ * It is fairly expensive with its 4 floating point additions and 2 floating point * multiplications. */ - FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { + FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); } @@ -206,7 +247,7 @@ * z_correction_for_x_on_horizontal_mesh_line is an optimization for * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi). */ - inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { + inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") ); SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0); @@ -217,7 +258,7 @@ return NAN; } - const float xratio = (RAW_X_POSITION(lx0) - pgm_read_float(&mesh_index_to_xpos[x1_i])) * (1.0 / (MESH_X_DIST)), + const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)), z1 = z_values[x1_i][yi]; return z1 + xratio * (z_values[x1_i + 1][yi] - z1); @@ -226,7 +267,7 @@ // // See comments above for z_correction_for_x_on_horizontal_mesh_line // - inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { + inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") ); SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0); @@ -237,7 +278,7 @@ return NAN; } - const float yratio = (RAW_Y_POSITION(ly0) - pgm_read_float(&mesh_index_to_ypos[y1_i])) * (1.0 / (MESH_Y_DIST)), + const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)), z1 = z_values[xi][y1_i]; return z1 + yratio * (z_values[xi][y1_i + 1] - z1); @@ -249,7 +290,7 @@ * Z-Height at both ends. Then it does a linear interpolation of these heights based * on the Y position within the cell. */ - float get_z_correction(const float &lx0, const float &ly0) { + static float get_z_correction(const float &lx0, const float &ly0) { const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)), cy = get_cell_index_y(RAW_Y_POSITION(ly0)); @@ -268,16 +309,16 @@ } const float z1 = calc_z0(RAW_X_POSITION(lx0), - pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy], - pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy]); + mesh_index_to_xpos(cx), z_values[cx][cy], + mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]); const float z2 = calc_z0(RAW_X_POSITION(lx0), - pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy + 1], - pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy + 1]); + mesh_index_to_xpos(cx), z_values[cx][cy + 1], + mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]); float z0 = calc_z0(RAW_Y_POSITION(ly0), - pgm_read_float(&mesh_index_to_ypos[cy]), z1, - pgm_read_float(&mesh_index_to_ypos[cy + 1]), z2); + mesh_index_to_ypos(cy), z1, + mesh_index_to_ypos(cy + 1), z2); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { @@ -324,7 +365,7 @@ * Returns 0.0 if Z is past the specified 'Fade Height'. */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - inline float fade_scaling_factor_for_z(const float &lz) { + static inline float fade_scaling_factor_for_z(const float &lz) { if (planner.z_fade_height == 0.0) return 1.0; static float fade_scaling_factor = 1.0; const float rz = RAW_Z_POSITION(lz); @@ -338,14 +379,24 @@ return fade_scaling_factor; } #else - inline float fade_scaling_factor_for_z(const float &lz) { - return 1.0; - } + FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; } #endif + FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_xpos[i]); } + FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_ypos[i]); } + + static bool prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate); + static void line_to_destination_cartesian(const float &fr, uint8_t e); + }; // class unified_bed_leveling extern unified_bed_leveling ubl; + #if ENABLED(UBL_G26_MESH_VALIDATION) + FORCE_INLINE void gcode_G26() { ubl.G26(); } + #endif + + FORCE_INLINE void gcode_G29() { ubl.G29(); } + #endif // AUTO_BED_LEVELING_UBL #endif // UNIFIED_BED_LEVELING_H diff --git a/Marlin/ubl_G29.cpp b/Marlin/ubl_G29.cpp index c9efd1212..381ab28ab 100644 --- a/Marlin/ubl_G29.cpp +++ b/Marlin/ubl_G29.cpp @@ -53,12 +53,6 @@ extern bool code_has_value(); extern float probe_pt(const float &x, const float &y, bool, int); extern bool set_probe_deployed(bool); - void smart_fill_mesh(); - void smart_fill_wlsf(const float &); - float measure_business_card_thickness(float &in_height); - void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); - - bool ProbeStay = true; #define SIZE_OF_LITTLE_RAISE 1 #define BIG_RAISE_NOT_NEEDED 0 @@ -66,6 +60,22 @@ extern void lcd_status_screen(); typedef void (*screenFunc_t)(); extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0); + extern void lcd_setstatus(const char* message, const bool persist); + extern void lcd_setstatuspgm(const char* message, const uint8_t level); + + int unified_bed_leveling::g29_verbose_level, + unified_bed_leveling::g29_phase_value, + unified_bed_leveling::g29_repetition_cnt, + unified_bed_leveling::g29_storage_slot = 0, + unified_bed_leveling::g29_map_type, + unified_bed_leveling::g29_grid_size; + bool unified_bed_leveling::g29_c_flag, + unified_bed_leveling::g29_x_flag, + unified_bed_leveling::g29_y_flag; + float unified_bed_leveling::g29_x_pos, + unified_bed_leveling::g29_y_pos, + unified_bed_leveling::g29_card_thickness = 0.0, + unified_bed_leveling::g29_constant = 0.0; /** * G29: Unified Bed Leveling by Roxy @@ -304,16 +314,7 @@ * we now have the functionality and features of all three systems combined. */ - // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine. - static int g29_verbose_level, phase_value, repetition_cnt, - storage_slot = 0, map_type, grid_size; - static bool repeat_flag, c_flag, x_flag, y_flag; - static float x_pos, y_pos, card_thickness = 0.0, ubl_constant = 0.0; - - extern void lcd_setstatus(const char* message, const bool persist); - extern void lcd_setstatuspgm(const char* message, const uint8_t level); - - void _O0 gcode_G29() { + void unified_bed_leveling::G29() { if (!settings.calc_num_meshes()) { SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it"); @@ -340,15 +341,15 @@ // it directly specifies the repetition count and does not use the 'R' parameter. if (code_seen('I')) { uint8_t cnt = 0; - repetition_cnt = code_has_value() ? code_value_int() : 1; - while (repetition_cnt--) { + g29_repetition_cnt = code_has_value() ? code_value_int() : 1; + while (g29_repetition_cnt--) { if (cnt > 20) { cnt = 0; idle(); } - const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false); + const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false); if (location.x_index < 0) { SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); break; // No more invalid Mesh Points to populate } - ubl.z_values[location.x_index][location.y_index] = NAN; + z_values[location.x_index][location.y_index] = NAN; cnt++; } SERIAL_PROTOCOLLNPGM("Locations invalidated.\n"); @@ -370,30 +371,30 @@ for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x, p2 = 0.5 * (GRID_MAX_POINTS_Y) - y; - ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2); + z_values[x][y] += 2.0 * HYPOT(p1, p2); } } break; case 1: for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised - ubl.z_values[x][x] += 9.999; - ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick + z_values[x][x] += 9.999; + z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick } break; case 2: // Allow the user to specify the height because 10mm is a little extreme in some cases. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed - ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99; + z_values[x][y] += code_seen('C') ? g29_constant : 9.99; break; } } if (code_seen('J')) { - if (grid_size) { // if not 0 it is a normal n x n grid being probed - ubl.save_ubl_active_state_and_disable(); - ubl.tilt_mesh_based_on_probed_grid(code_seen('T')); - ubl.restore_ubl_active_state_and_leave(); + if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed + save_ubl_active_state_and_disable(); + tilt_mesh_based_on_probed_grid(code_seen('T')); + restore_ubl_active_state_and_leave(); } else { // grid_size == 0 : A 3-Point leveling has been requested float z3, z2, z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level); @@ -413,29 +414,29 @@ // doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says // its height is.) - ubl.save_ubl_active_state_and_disable(); - z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ; - z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ; - z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ; + save_ubl_active_state_and_disable(); + z1 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ; + z2 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ; + z3 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ; do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y))); - ubl.tilt_mesh_based_on_3pts(z1, z2, z3); - ubl.restore_ubl_active_state_and_leave(); + tilt_mesh_based_on_3pts(z1, z2, z3); + restore_ubl_active_state_and_leave(); } } if (code_seen('P')) { - if (WITHIN(phase_value, 0, 1) && ubl.state.storage_slot == -1) { - ubl.state.storage_slot = 0; + if (WITHIN(g29_phase_value, 0, 1) && state.storage_slot == -1) { + state.storage_slot = 0; SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected."); } - switch (phase_value) { + switch (g29_phase_value) { case 0: // // Zero Mesh Data // - ubl.reset(); + reset(); SERIAL_PROTOCOLLNPGM("Mesh zeroed."); break; @@ -444,16 +445,16 @@ // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe // if (!code_seen('C')) { - ubl.invalidate(); + invalidate(); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh."); } if (g29_verbose_level > 1) { - SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos); + SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos); SERIAL_PROTOCOLCHAR(','); - SERIAL_PROTOCOL(y_pos); + SERIAL_PROTOCOL(g29_y_pos); SERIAL_PROTOCOLLNPGM(").\n"); } - ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, + probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, code_seen('T'), code_seen('E'), code_seen('U')); break; @@ -463,7 +464,7 @@ // SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations."); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); - if (!x_flag && !y_flag) { + if (!g29_x_flag && !g29_y_flag) { /** * Use a good default location for the path. * The flipped > and < operators in these comparisons is intentional. @@ -472,25 +473,25 @@ * Until that is decided, this can be forced with the X and Y parameters. */ #if IS_KINEMATIC - x_pos = X_HOME_POS; - y_pos = Y_HOME_POS; + g29_x_pos = X_HOME_POS; + g29_y_pos = Y_HOME_POS; #else // cartesian - x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS; - y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS; + g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS; + g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS; #endif } if (code_seen('C')) { - x_pos = current_position[X_AXIS]; - y_pos = current_position[Y_AXIS]; + g29_x_pos = current_position[X_AXIS]; + g29_y_pos = current_position[Y_AXIS]; } float height = Z_CLEARANCE_BETWEEN_PROBES; if (code_seen('B')) { - card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height); + g29_card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height); - if (fabs(card_thickness) > 1.5) { + if (fabs(g29_card_thickness) > 1.5) { SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement."); return; } @@ -498,12 +499,12 @@ if (code_seen('H') && code_has_value()) height = code_value_float(); - if (!position_is_reachable_xy(x_pos, y_pos)) { + if (!position_is_reachable_xy(g29_x_pos, g29_y_pos)) { SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius."); return; } - manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('T')); + manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, code_seen('T')); SERIAL_PROTOCOLLNPGM("G29 P2 finished."); } break; @@ -514,19 +515,19 @@ * - Specify a constant with the 'C' parameter. * - Allow 'G29 P3' to choose a 'reasonable' constant. */ - if (c_flag) { - if (repetition_cnt >= GRID_MAX_POINTS) { + if (g29_c_flag) { + if (g29_repetition_cnt >= GRID_MAX_POINTS) { for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { - ubl.z_values[x][y] = ubl_constant; + z_values[x][y] = g29_constant; } } } else { - while (repetition_cnt--) { // this only populates reachable mesh points near - const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false); + while (g29_repetition_cnt--) { // this only populates reachable mesh points near + const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false); if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate - ubl.z_values[location.x_index][location.y_index] = ubl_constant; + z_values[location.x_index][location.y_index] = g29_constant; } } } else { @@ -561,13 +562,13 @@ // Fine Tune (i.e., Edit) the Mesh // - fine_tune_mesh(x_pos, y_pos, code_seen('T')); + fine_tune_mesh(g29_x_pos, g29_y_pos, code_seen('T')); break; - case 5: ubl.find_mean_mesh_height(); break; + case 5: find_mean_mesh_height(); break; - case 6: ubl.shift_mesh_height(); break; + case 6: shift_mesh_height(); break; } } @@ -575,7 +576,7 @@ // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is // good to have the extra information. Soon... we prune this to just a few items // - if (code_seen('W')) ubl.g29_what_command(); + if (code_seen('W')) g29_what_command(); // // When we are fully debugged, this may go away. But there are some valid @@ -590,7 +591,7 @@ // if (code_seen('L')) { // Load Current Mesh Data - storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot; + g29_storage_slot = code_has_value() ? code_value_int() : state.storage_slot; int16_t a = settings.calc_num_meshes(); @@ -599,14 +600,14 @@ return; } - if (!WITHIN(storage_slot, 0, a - 1)) { + if (!WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_PROTOCOLLNPGM("?Invalid storage slot."); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1); return; } - settings.load_mesh(storage_slot); - ubl.state.storage_slot = storage_slot; + settings.load_mesh(g29_storage_slot); + state.storage_slot = g29_storage_slot; SERIAL_PROTOCOLLNPGM("Done."); } @@ -616,19 +617,19 @@ // if (code_seen('S')) { // Store (or Save) Current Mesh Data - storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot; + g29_storage_slot = code_has_value() ? code_value_int() : state.storage_slot; - if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the + if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) - if (!isnan(ubl.z_values[x][y])) { + if (!isnan(z_values[x][y])) { SERIAL_ECHOPAIR("M421 I ", x); SERIAL_ECHOPAIR(" J ", y); SERIAL_ECHOPGM(" Z "); - SERIAL_ECHO_F(ubl.z_values[x][y], 6); - SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x]))); - SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y]))); + SERIAL_ECHO_F(z_values[x][y], 6); + SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(mesh_index_to_xpos(x))); + SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(mesh_index_to_ypos(y))); SERIAL_EOL; } return; @@ -641,32 +642,32 @@ goto LEAVE; } - if (!WITHIN(storage_slot, 0, a - 1)) { + if (!WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_PROTOCOLLNPGM("?Invalid storage slot."); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1); goto LEAVE; } - settings.store_mesh(storage_slot); - ubl.state.storage_slot = storage_slot; + settings.store_mesh(g29_storage_slot); + state.storage_slot = g29_storage_slot; SERIAL_PROTOCOLLNPGM("Done."); } if (code_seen('T')) - ubl.display_map(code_has_value() ? code_value_int() : 0); + display_map(code_has_value() ? code_value_int() : 0); /* * This code may not be needed... Prepare for its removal... * if (code_seen('Z')) { if (code_has_value()) - ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value + state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value else { - ubl.save_ubl_active_state_and_disable(); - //float measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level); + save_ubl_active_state_and_disable(); + //float measured_z = probe_pt(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level); - ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware + has_control_of_lcd_panel = true; // Grab the LCD Hardware float measured_z = 1.5; do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything // The user is not going to be locking in a new Z-Offset very often so @@ -682,7 +683,7 @@ do_blocking_move_to_z(measured_z); } while (!ubl_lcd_clicked()); - ubl.has_control_of_lcd_panel = true; // There is a race condition for the encoder click. + has_control_of_lcd_panel = true; // There is a race condition for the encoder click. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. So, until we are done looking for a long encoder press, // we need to take control of the panel @@ -698,17 +699,17 @@ SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); LCD_MESSAGEPGM("Z-Offset Stopped"); // TODO: Make translatable string - ubl.restore_ubl_active_state_and_leave(); + restore_ubl_active_state_and_leave(); goto LEAVE; } } - ubl.has_control_of_lcd_panel = false; + has_control_of_lcd_panel = false; safe_delay(20); // We don't want any switch noise. - ubl.state.z_offset = measured_z; + state.z_offset = measured_z; lcd_implementation_clear(); - ubl.restore_ubl_active_state_and_leave(); + restore_ubl_active_state_and_leave(); } } */ @@ -719,7 +720,7 @@ LCD_MESSAGEPGM(""); lcd_quick_feedback(); - ubl.has_control_of_lcd_panel = false; + has_control_of_lcd_panel = false; } void unified_bed_leveling::find_mean_mesh_height() { @@ -727,8 +728,8 @@ int n = 0; for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) - if (!isnan(ubl.z_values[x][y])) { - sum += ubl.z_values[x][y]; + if (!isnan(z_values[x][y])) { + sum += z_values[x][y]; n++; } @@ -740,8 +741,8 @@ float sum_of_diff_squared = 0.0; for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) - if (!isnan(ubl.z_values[x][y])) - sum_of_diff_squared += sq(ubl.z_values[x][y] - mean); + if (!isnan(z_values[x][y])) + sum_of_diff_squared += sq(z_values[x][y] - mean); SERIAL_ECHOLNPAIR("# of samples: ", n); SERIAL_ECHOPGM("Mean Mesh Height: "); @@ -753,18 +754,18 @@ SERIAL_ECHO_F(sigma, 6); SERIAL_EOL; - if (c_flag) + if (g29_c_flag) for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) - if (!isnan(ubl.z_values[x][y])) - ubl.z_values[x][y] -= mean + ubl_constant; + if (!isnan(z_values[x][y])) + z_values[x][y] -= mean + g29_constant; } void unified_bed_leveling::shift_mesh_height() { for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) - if (!isnan(ubl.z_values[x][y])) - ubl.z_values[x][y] += ubl_constant; + if (!isnan(z_values[x][y])) + z_values[x][y] += g29_constant; } /** @@ -774,8 +775,8 @@ void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) { mesh_index_pair location; - ubl.has_control_of_lcd_panel = true; - ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe + has_control_of_lcd_panel = true; + save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe DEPLOY_PROBE(); uint16_t max_iterations = GRID_MAX_POINTS; @@ -786,8 +787,8 @@ lcd_quick_feedback(); STOW_PROBE(); while (ubl_lcd_clicked()) idle(); - ubl.has_control_of_lcd_panel = false; - ubl.restore_ubl_active_state_and_leave(); + has_control_of_lcd_panel = false; + restore_ubl_active_state_and_leave(); safe_delay(50); // Debounce the Encoder wheel return; } @@ -795,19 +796,19 @@ location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far); if (location.x_index >= 0) { // mesh point found and is reachable by probe - const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), - rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); + const float rawx = mesh_index_to_xpos(location.x_index), + rawy = mesh_index_to_ypos(location.y_index); const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); // TODO: Needs error handling - ubl.z_values[location.x_index][location.y_index] = measured_z; + z_values[location.x_index][location.y_index] = measured_z; } - if (do_ubl_mesh_map) ubl.display_map(map_type); + if (do_ubl_mesh_map) display_map(g29_map_type); } while (location.x_index >= 0 && --max_iterations); STOW_PROBE(); - ubl.restore_ubl_active_state_and_leave(); + restore_ubl_active_state_and_leave(); do_blocking_move_to_xy( constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X), @@ -886,9 +887,9 @@ for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { - float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]), - y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]), - z_tmp = ubl.z_values[i][j]; + float x_tmp = mesh_index_to_xpos(i), + y_tmp = mesh_index_to_ypos(j), + z_tmp = z_values[i][j]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("before rotation = ["); @@ -914,12 +915,12 @@ safe_delay(55); } #endif - ubl.z_values[i][j] += z_tmp - d; + z_values[i][j] += z_tmp - d; } } } - float use_encoder_wheel_to_measure_point() { + float unified_bed_leveling::measure_point_with_encoder() { while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel delay(50); // debounce @@ -927,9 +928,9 @@ KEEPALIVE_STATE(PAUSED_FOR_USER); while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); - if (ubl.encoder_diff) { - do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff)); - ubl.encoder_diff = 0; + if (encoder_diff) { + do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff)); + encoder_diff = 0; } } KEEPALIVE_STATE(IN_HANDLER); @@ -938,9 +939,9 @@ static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); } - float measure_business_card_thickness(float &in_height) { - ubl.has_control_of_lcd_panel = true; - ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing + float unified_bed_leveling::measure_business_card_thickness(float &in_height) { + has_control_of_lcd_panel = true; + save_ubl_active_state_and_disable(); // Disable bed level correction for probing do_blocking_move_to_z(in_height); do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y))); @@ -952,7 +953,7 @@ lcd_goto_screen(lcd_status_screen); echo_and_take_a_measurement(); - const float z1 = use_encoder_wheel_to_measure_point(); + const float z1 = measure_point_with_encoder(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); stepper.synchronize(); @@ -960,7 +961,7 @@ LCD_MESSAGEPGM("Remove & measure bed"); // TODO: Make translatable string echo_and_take_a_measurement(); - const float z2 = use_encoder_wheel_to_measure_point(); + const float z2 = measure_point_with_encoder(); do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES); @@ -974,17 +975,17 @@ in_height = current_position[Z_AXIS]; // do manual probing at lower height - ubl.has_control_of_lcd_panel = false; + has_control_of_lcd_panel = false; - ubl.restore_ubl_active_state_and_leave(); + restore_ubl_active_state_and_leave(); return thickness; } - void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { + void unified_bed_leveling::manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) { - ubl.has_control_of_lcd_panel = true; - ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe + has_control_of_lcd_panel = true; + save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); do_blocking_move_to_xy(lx, ly); @@ -995,8 +996,8 @@ // It doesn't matter if the probe can't reach the NAN location. This is a manual probe. if (location.x_index < 0 && location.y_index < 0) continue; - const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), - rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]), + const float rawx = mesh_index_to_xpos(location.x_index), + rawy = mesh_index_to_ypos(location.y_index), xProbe = LOGICAL_X_POSITION(rawx), yProbe = LOGICAL_Y_POSITION(rawy); @@ -1010,9 +1011,9 @@ do_blocking_move_to_z(z_clearance); KEEPALIVE_STATE(PAUSED_FOR_USER); - ubl.has_control_of_lcd_panel = true; + has_control_of_lcd_panel = true; - if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing + if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing if (code_seen('B')) LCD_MESSAGEPGM("Place shim & measure"); // TODO: Make translatable string @@ -1023,9 +1024,9 @@ delay(50); // debounce while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); - if (ubl.encoder_diff) { - do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0); - ubl.encoder_diff = 0; + if (encoder_diff) { + do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) / 100.0); + encoder_diff = 0; } } @@ -1040,48 +1041,47 @@ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_quick_feedback(); while (ubl_lcd_clicked()) idle(); - ubl.has_control_of_lcd_panel = false; + has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); - ubl.restore_ubl_active_state_and_leave(); + restore_ubl_active_state_and_leave(); return; } } - ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; + z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick; if (g29_verbose_level > 2) { SERIAL_PROTOCOLPGM("Mesh Point Measured at: "); - SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6); + SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); SERIAL_EOL; } } while (location.x_index >= 0 && location.y_index >= 0); - if (do_ubl_mesh_map) ubl.display_map(map_type); + if (do_ubl_mesh_map) display_map(g29_map_type); - ubl.restore_ubl_active_state_and_leave(); + restore_ubl_active_state_and_leave(); KEEPALIVE_STATE(IN_HANDLER); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(lx, ly); } - bool g29_parameter_parsing() { + bool unified_bed_leveling::g29_parameter_parsing() { bool err_flag = false; LCD_MESSAGEPGM("Doing G29 UBL!"); // TODO: Make translatable string lcd_quick_feedback(); - ubl_constant = 0.0; - repetition_cnt = 0; + g29_constant = 0.0; + g29_repetition_cnt = 0; - x_flag = code_seen('X') && code_has_value(); - x_pos = x_flag ? code_value_float() : current_position[X_AXIS]; - y_flag = code_seen('Y') && code_has_value(); - y_pos = y_flag ? code_value_float() : current_position[Y_AXIS]; + g29_x_flag = code_seen('X') && code_has_value(); + g29_x_pos = g29_x_flag ? code_value_float() : current_position[X_AXIS]; + g29_y_flag = code_seen('Y') && code_has_value(); + g29_y_pos = g29_y_flag ? code_value_float() : current_position[Y_AXIS]; - repeat_flag = code_seen('R'); - if (repeat_flag) { - repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS; - NOMORE(repetition_cnt, GRID_MAX_POINTS); - if (repetition_cnt < 1) { + if (code_seen('R')) { + g29_repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS; + NOMORE(g29_repetition_cnt, GRID_MAX_POINTS); + if (g29_repetition_cnt < 1) { SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n"); return UBL_ERR; } @@ -1094,31 +1094,31 @@ } if (code_seen('P')) { - phase_value = code_value_int(); - if (!WITHIN(phase_value, 0, 6)) { + g29_phase_value = code_value_int(); + if (!WITHIN(g29_phase_value, 0, 6)) { SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n"); err_flag = true; } } if (code_seen('J')) { - grid_size = code_has_value() ? code_value_int() : 0; - if (grid_size!=0 && !WITHIN(grid_size, 2, 9)) { + g29_grid_size = code_has_value() ? code_value_int() : 0; + if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) { SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n"); err_flag = true; } } - if (x_flag != y_flag) { + if (g29_x_flag != g29_y_flag) { SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); err_flag = true; } - if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) { + if (!WITHIN(RAW_X_POSITION(g29_x_pos), X_MIN_POS, X_MAX_POS)) { SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); err_flag = true; } - if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) { + if (!WITHIN(RAW_Y_POSITION(g29_y_pos), Y_MIN_POS, Y_MAX_POS)) { SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); err_flag = true; } @@ -1131,17 +1131,17 @@ SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n"); return UBL_ERR; } - ubl.state.active = true; - ubl.report_state(); + state.active = true; + report_state(); } else if (code_seen('D')) { - ubl.state.active = false; - ubl.report_state(); + state.active = false; + report_state(); } // Set global 'C' flag and its value - if ((c_flag = code_seen('C'))) - ubl_constant = code_value_float(); + if ((g29_c_flag = code_seen('C'))) + g29_constant = code_value_float(); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (code_seen('F') && code_has_value()) { @@ -1154,8 +1154,8 @@ } #endif - map_type = code_seen('T') && code_has_value() ? code_value_int() : 0; - if (!WITHIN(map_type, 0, 1)) { + g29_map_type = code_seen('T') && code_has_value() ? code_value_int() : 0; + if (!WITHIN(g29_map_type, 0, 1)) { SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); return UBL_ERR; } @@ -1173,8 +1173,8 @@ lcd_quick_feedback(); return; } - ubl_state_at_invocation = ubl.state.active; - ubl.state.active = 0; + ubl_state_at_invocation = state.active; + state.active = 0; } void unified_bed_leveling::restore_ubl_active_state_and_leave() { @@ -1184,7 +1184,7 @@ lcd_quick_feedback(); return; } - ubl.state.active = ubl_state_at_invocation; + state.active = ubl_state_at_invocation; } /** @@ -1232,7 +1232,7 @@ SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { - SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&mesh_index_to_xpos[i])), 3); + SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3); SERIAL_PROTOCOLPGM(" "); safe_delay(25); } @@ -1240,7 +1240,7 @@ SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) { - SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&mesh_index_to_ypos[i])), 3); + SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3); SERIAL_PROTOCOLPGM(" "); safe_delay(25); } @@ -1286,7 +1286,7 @@ * When we are fully debugged, the EEPROM dump command will get deleted also. But * right now, it is good to have the extra information. Soon... we prune this. */ - void g29_eeprom_dump() { + void unified_bed_leveling::g29_eeprom_dump() { unsigned char cccc; uint16_t kkkk; @@ -1311,7 +1311,7 @@ * When we are fully debugged, this may go away. But there are some valid * use cases for the users. So we can wait and see what to do with it. */ - void g29_compare_current_mesh_to_stored_mesh() { + void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() { int16_t a = settings.calc_num_meshes(); if (!a) { @@ -1325,26 +1325,26 @@ return; } - storage_slot = code_value_int(); + g29_storage_slot = code_value_int(); - if (!WITHIN(storage_slot, 0, a - 1)) { + if (!WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_PROTOCOLLNPGM("?Invalid storage slot."); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1); return; } float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; - settings.load_mesh(storage_slot, &tmp_z_values); + settings.load_mesh(g29_storage_slot, &tmp_z_values); - SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", storage_slot); + SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot); SERIAL_PROTOCOLLNPGM(" from current mesh."); for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) - ubl.z_values[x][y] -= tmp_z_values[x][y]; + z_values[x][y] -= tmp_z_values[x][y]; } - mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) { + mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) { mesh_index_pair out_mesh; out_mesh.x_index = out_mesh.y_index = -1; @@ -1357,15 +1357,15 @@ for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { - if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing - || (type == REAL && !isnan(ubl.z_values[i][j])) + if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing + || (type == REAL && !isnan(z_values[i][j])) || (type == SET_IN_BITMAP && is_bit_set(bits, i, j)) ) { // We only get here if we found a Mesh Point of the specified type float raw_x = RAW_CURRENT_POSITION(X), raw_y = RAW_CURRENT_POSITION(Y); - const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), - my = pgm_read_float(&ubl.mesh_index_to_ypos[j]); + const float mx = mesh_index_to_xpos(i), + my = mesh_index_to_ypos(j); // If using the probe as the reference there are some unreachable locations. // Also for round beds, there are grid points outside the bed the nozzle can't reach. @@ -1389,7 +1389,7 @@ if (far_flag) { for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) { for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { - if (i != k && j != l && !isnan(ubl.z_values[k][l])) { + if (i != k && j != l && !isnan(z_values[k][l])) { //distance += pow((float) abs(i - k) * (MESH_X_DIST), 2) + pow((float) abs(j - l) * (MESH_Y_DIST), 2); // working here distance += HYPOT(MESH_X_DIST, MESH_Y_DIST) / log(HYPOT((i - k) * (MESH_X_DIST) + .001, (j - l) * (MESH_Y_DIST)) + .001); } @@ -1415,20 +1415,19 @@ return out_mesh; } - void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) { + void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) { if (!code_seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified - repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided. + g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided. mesh_index_pair location; uint16_t not_done[16]; - int32_t round_off; if (!position_is_reachable_xy(lx, ly)) { SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius."); return; } - ubl.save_ubl_active_state_and_disable(); + save_ubl_active_state_and_disable(); memset(not_done, 0xFF, sizeof(not_done)); @@ -1444,13 +1443,13 @@ bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a // different location the next time through the loop - const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), - rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); + const float rawx = mesh_index_to_xpos(location.x_index), + rawy = mesh_index_to_ypos(location.y_index); if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable break; - float new_z = ubl.z_values[location.x_index][location.y_index]; + float new_z = z_values[location.x_index][location.y_index]; if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited new_z = 0.0; @@ -1461,9 +1460,9 @@ new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place KEEPALIVE_STATE(PAUSED_FOR_USER); - ubl.has_control_of_lcd_panel = true; + has_control_of_lcd_panel = true; - if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted + if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted lcd_implementation_clear(); @@ -1482,7 +1481,7 @@ // The technique used here generates a race condition for the encoder click. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here. // Let's work on specifying a proper API for the LCD ASAP, OK? - ubl.has_control_of_lcd_panel = true; + has_control_of_lcd_panel = true; // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This @@ -1504,19 +1503,19 @@ safe_delay(20); // We don't want any switch noise. - ubl.z_values[location.x_index][location.y_index] = new_z; + z_values[location.x_index][location.y_index] = new_z; lcd_implementation_clear(); - } while (location.x_index >= 0 && --repetition_cnt > 0); + } while (location.x_index >= 0 && --g29_repetition_cnt > 0); FINE_TUNE_EXIT: - ubl.has_control_of_lcd_panel = false; + has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); - if (do_ubl_mesh_map) ubl.display_map(map_type); - ubl.restore_ubl_active_state_and_leave(); + if (do_ubl_mesh_map) display_map(g29_map_type); + restore_ubl_active_state_and_leave(); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); do_blocking_move_to_xy(lx, ly); @@ -1531,15 +1530,15 @@ * calculate a 'reasonable' value for the unprobed mesh point. */ - bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { + bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { const int8_t x1 = x + xdir, x2 = x1 + xdir, y1 = y + ydir, y2 = y1 + ydir; // A NAN next to a pair of real values? - if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) { - if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward? - ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.) + if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) { + if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward? + z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.) else - ubl.z_values[x][y] = 2.0 * ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward... + z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward... return true; } return false; @@ -1547,7 +1546,7 @@ typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info; - void smart_fill_mesh() { + void unified_bed_leveling::smart_fill_mesh() { const smart_fill_info info[] = { { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down @@ -1577,17 +1576,17 @@ y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y), y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y); - const float dx = float(x_max - x_min) / (grid_size - 1.0), - dy = float(y_max - y_min) / (grid_size - 1.0); + const float dx = float(x_max - x_min) / (g29_grid_size - 1.0), + dy = float(y_max - y_min) / (g29_grid_size - 1.0); struct linear_fit_data lsf_results; incremental_LSF_reset(&lsf_results); bool zig_zag = false; - for (uint8_t ix = 0; ix < grid_size; ix++) { + for (uint8_t ix = 0; ix < g29_grid_size; ix++) { const float x = float(x_min) + ix * dx; - for (int8_t iy = 0; iy < grid_size; iy++) { - const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy); + for (int8_t iy = 0; iy < g29_grid_size; iy++) { + const float y = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy); float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level); // TODO: Needs error handling #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { @@ -1654,8 +1653,8 @@ for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { - float x_tmp = pgm_read_float(&mesh_index_to_xpos[i]), - y_tmp = pgm_read_float(&mesh_index_to_ypos[j]), + float x_tmp = mesh_index_to_xpos(i), + y_tmp = mesh_index_to_ypos(j), z_tmp = z_values[i][j]; #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -1715,47 +1714,40 @@ } #if ENABLED(UBL_G29_P31) - - // Note: using optimize("O2") for this routine results in smaller - // codegen than default optimize("Os") on A2560. - - void _O2 smart_fill_wlsf( float weight_factor ) { + void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) { // For each undefined mesh point, compute a distance-weighted least squares fit // from all the originally populated mesh points, weighted toward the point // being extrapolated so that nearby points will have greater influence on // the point being extrapolated. Then extrapolate the mesh point from WLSF. - static_assert( GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big" ); - uint16_t bitmap[GRID_MAX_POINTS_X] = {0}; + static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big"); + uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 }; struct linear_fit_data lsf_results; SERIAL_ECHOPGM("Extrapolating mesh..."); const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST); - for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) { - for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) { - if ( !isnan( ubl.z_values[jx][jy] )) { - bitmap[jx] |= (uint16_t)1 << jy; - } - } - } + for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) + for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) + if (!isnan(z_values[jx][jy])) + SBI(bitmap[jx], jy); for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) { - const float px = pgm_read_float(&(ubl.mesh_index_to_xpos[ix])); + const float px = mesh_index_to_xpos(ix); for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) { - const float py = pgm_read_float(&(ubl.mesh_index_to_ypos[iy])); - if ( isnan( ubl.z_values[ix][iy] )) { + const float py = mesh_index_to_ypos(iy); + if (isnan(z_values[ix][iy])) { // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points. incremental_LSF_reset(&lsf_results); for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) { - const float rx = pgm_read_float(&(ubl.mesh_index_to_xpos[jx])); + const float rx = mesh_index_to_xpos(jx); for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) { - if ( bitmap[jx] & (uint16_t)1 << jy ) { - const float ry = pgm_read_float(&(ubl.mesh_index_to_ypos[jy])); - const float rz = ubl.z_values[jx][jy]; - const float w = 1.0 + weight_scaled / HYPOT((rx - px),(ry - py)); + if (TEST(bitmap[jx], jy)) { + const float ry = mesh_index_to_ypos(jy), + rz = z_values[jx][jy], + w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py)); incremental_WLSF(&lsf_results, rx, ry, rz, w); } } @@ -1765,7 +1757,7 @@ return; } const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py; - ubl.z_values[ix][iy] = ez; + z_values[ix][iy] = ez; idle(); // housekeeping } } @@ -1775,5 +1767,4 @@ } #endif // UBL_G29_P31 - #endif // AUTO_BED_LEVELING_UBL diff --git a/Marlin/ubl_motion.cpp b/Marlin/ubl_motion.cpp index 64aac5e17..3bd8165d1 100644 --- a/Marlin/ubl_motion.cpp +++ b/Marlin/ubl_motion.cpp @@ -85,7 +85,7 @@ } - void ubl_line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) { + void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) { /** * Much of the nozzle movement will be within the same cell. So we will do as little computation * as possible to determine if this is the case. If this move is within the same cell, we will @@ -104,19 +104,19 @@ destination[E_AXIS] }; - const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), - cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), - cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), - cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); + const int cell_start_xi = get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), + cell_start_yi = get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), + cell_dest_xi = get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), + cell_dest_yi = get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); - if (ubl.g26_debug_flag) { - SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]); + if (g26_debug_flag) { + SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]); SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); SERIAL_CHAR(')'); SERIAL_EOL; - debug_current_and_destination(PSTR("Start of ubl_line_to_destination()")); + debug_current_and_destination(PSTR("Start of ubl.line_to_destination()")); } if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell, @@ -132,11 +132,11 @@ // Note: There is no Z Correction in this case. We are off the grid and don't know what // a reasonable correction would be. - planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); + planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + state.z_offset, end[E_AXIS], feed_rate, extruder); set_current_to_destination(); - if (ubl.g26_debug_flag) - debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()")); + if (g26_debug_flag) + debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()")); return; } @@ -152,20 +152,20 @@ * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. */ - const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&ubl.mesh_index_to_xpos[cell_dest_xi])) * (1.0 / (MESH_X_DIST)), - z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio * - (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]), - z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * - (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]); + const float xratio = (RAW_X_POSITION(end[X_AXIS]) - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST)), + z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio * + (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]), + z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * + (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]); // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // are going to apply the Y-Distance into the cell to interpolate the final Z correction. - const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&ubl.mesh_index_to_ypos[cell_dest_yi])) * (1.0 / (MESH_Y_DIST)); + const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST)); float z0 = z1 + (z2 - z1) * yratio; - z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); + z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -176,10 +176,10 @@ */ if (isnan(z0)) z0 = 0.0; - planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); + planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + state.z_offset, end[E_AXIS], feed_rate, extruder); - if (ubl.g26_debug_flag) - debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()")); + if (g26_debug_flag) + debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()")); set_current_to_destination(); return; @@ -240,7 +240,7 @@ current_yi += down_flag; // Line is heading down, we just want to go to the bottom while (current_yi != cell_dest_yi + down_flag) { current_yi += dyi; - const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi])); + const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi)); /** * if the slope of the line is infinite, we won't do the calculations @@ -249,9 +249,9 @@ */ const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; - float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); + float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); - z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); + z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -262,7 +262,7 @@ */ if (isnan(z0)) z0 = 0.0; - const float y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi])); + const float y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi)); /** * Without this check, it is possible for the algorithm to generate a zero length move in the case @@ -281,12 +281,12 @@ z_position = end[Z_AXIS]; } - planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); + planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder); } //else printf("FIRST MOVE PRUNED "); } - if (ubl.g26_debug_flag) - debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()")); + if (g26_debug_flag) + debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()")); // // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done. @@ -311,12 +311,12 @@ // edge of this cell for the first move. while (current_xi != cell_dest_xi + left_flag) { current_xi += dxi; - const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])), + const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)), y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line - float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); + float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); - z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); + z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -327,7 +327,7 @@ */ if (isnan(z0)) z0 = 0.0; - const float x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])); + const float x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)); /** * Without this check, it is possible for the algorithm to generate a zero length move in the case @@ -346,12 +346,12 @@ z_position = end[Z_AXIS]; } - planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); + planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder); } //else printf("FIRST MOVE PRUNED "); } - if (ubl.g26_debug_flag) - debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()")); + if (g26_debug_flag) + debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()")); if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; @@ -377,8 +377,8 @@ while (xi_cnt > 0 || yi_cnt > 0) { - const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi + dxi])), - next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi + dyi])), + const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi + dxi)), + next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi + dyi)), y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line // (No need to worry about m being zero. @@ -387,9 +387,9 @@ if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first // Yes! Crossing a Y Mesh Line next - float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); + float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); - z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); + z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -409,15 +409,15 @@ e_position = end[E_AXIS]; z_position = end[Z_AXIS]; } - planner._buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); + planner._buffer_line(x, next_mesh_line_y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder); current_yi += dyi; yi_cnt--; } else { // Yes! Crossing a X Mesh Line next - float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); + float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); - z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); + z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -438,7 +438,7 @@ z_position = end[Z_AXIS]; } - planner._buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); + planner._buffer_line(next_mesh_line_x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder); current_xi += dxi; xi_cnt--; } @@ -446,8 +446,8 @@ if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE } - if (ubl.g26_debug_flag) - debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()")); + if (g26_debug_flag) + debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()")); if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; @@ -502,7 +502,7 @@ * Returns true if the caller did NOT update current_position, otherwise false. */ - static bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) { + static bool unified_bed_leveling::prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) { if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary return true; // did not move, so current_position still accurate @@ -554,9 +554,9 @@ // Only compute leveling per segment if ubl active and target below z_fade_height. - if (!ubl.state.active || above_fade_height) { // no mesh leveling + if (!state.active || above_fade_height) { // no mesh leveling - const float z_offset = ubl.state.active ? ubl.state.z_offset : 0.0; + const float z_offset = state.active ? state.z_offset : 0.0; float seg_dest[XYZE]; // per-segment destination, COPY_XYZE(seg_dest, current_position); // starting from current position @@ -579,7 +579,7 @@ // Otherwise perform per-segment leveling #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - const float fade_scaling_factor = ubl.fade_scaling_factor_for_z(ltarget[Z_AXIS]); + const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]); #endif float seg_dest[XYZE]; // per-segment destination, initialize to first segment @@ -591,7 +591,7 @@ float rx = RAW_X_POSITION(seg_dest[X_AXIS]), // assume raw vs logical coordinates shifted but not scaled. ry = RAW_Y_POSITION(seg_dest[Y_AXIS]); - do { // for each mesh cell encountered during the move + for(;;) { // for each mesh cell encountered during the move // Compute mesh cell invariants that remain constant for all segments within cell. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter) @@ -606,19 +606,19 @@ cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); - const float x0 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add - y0 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add - x1 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add - y1 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add + const float x0 = pgm_read_float(&(mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add + y0 = pgm_read_float(&(mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add + x1 = pgm_read_float(&(mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add + y1 = pgm_read_float(&(mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add float cx = rx - x0, // cell-relative x cy = ry - y0, // cell-relative y - z_x0y0 = ubl.z_values[cell_xi ][cell_yi ], // z at lower left corner - z_x1y0 = ubl.z_values[cell_xi+1][cell_yi ], // z at upper left corner - z_x0y1 = ubl.z_values[cell_xi ][cell_yi+1], // z at lower right corner - z_x1y1 = ubl.z_values[cell_xi+1][cell_yi+1]; // z at upper right corner + z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner + z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner + z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner + z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner - if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating ubl.state.active (G29 A) + if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A) if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points @@ -642,7 +642,7 @@ const float z_sxy0 = z_xmy0 * dx_seg, // per-segment adjustment to z_cxy0 z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * dx_seg; // per-segment adjustment to z_cxym - do { // for all segments within this mesh cell + for(;;) { // for all segments within this mesh cell float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy @@ -650,7 +650,7 @@ z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height #endif - z_cxcy += ubl.state.z_offset; // add fixed mesh offset from G29 Z + z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z if (--segments == 0) { // if this is last segment, use ltarget for exact COPY_XYZE(seg_dest, ltarget); @@ -681,9 +681,9 @@ z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0 z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym - } while (true); // per-segment loop exits by break after last segment within cell, or by return on final segment - } while (true); // per-cell loop - } // end of function + } // segment loop + } // cell loop + } #endif // UBL_DELTA