Fix prepare_kinematic_move_to precision

This commit is contained in:
Scott Lahteine 2016-09-23 01:46:52 -05:00
parent 85e607153b
commit 865ad25781

View File

@ -8092,68 +8092,78 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
* This calls planner.buffer_line several times, adding
* small incremental moves for DELTA or SCARA.
*/
inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
// Get the top feedrate of the move in the XY plane
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
// If the move is only in Z don't split up the move.
// This shortcut cannot be used if planar bed leveling
// is in use, but is fine with mesh-based bed leveling
if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) {
inverse_kinematics(logical);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
// If the move is only in Z/E don't split up the move
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
inverse_kinematics(ltarget);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
return true;
}
// Get the distance moved in XYZ
// Get the cartesian distances moved in XYZE
float difference[NUM_AXIS];
LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
// Get the linear distance in XYZ
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
// If the move is very short, check the E move distance
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
// No E move either? Game over.
if (UNEAR_ZERO(cartesian_mm)) return false;
// Minimum number of seconds to move the given distance
float seconds = cartesian_mm / _feedrate_mm_s;
// The number of segments-per-second times the duration
// gives the number of segments we should produce
// gives the number of segments
uint16_t segments = delta_segments_per_second * seconds;
// For SCARA minimum segment size is 0.5mm
#if IS_SCARA
NOMORE(segments, cartesian_mm * 2);
#endif
// At least one segment is required
NOLESS(segments, 1);
// Each segment produces this much of the move
float inv_segments = 1.0 / segments,
segment_distance[XYZE] = {
difference[X_AXIS] * inv_segments,
difference[Y_AXIS] * inv_segments,
difference[Z_AXIS] * inv_segments,
difference[E_AXIS] * inv_segments
// The approximate length of each segment
float segment_distance[XYZE] = {
difference[X_AXIS] / segments,
difference[Y_AXIS] / segments,
difference[Z_AXIS] / segments,
difference[E_AXIS] / segments
};
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments);
// Send all the segments to the planner
// Drop one segment so the last move is to the exact target.
// If there's only 1 segment, loops will be skipped entirely.
--segments;
// Using "raw" coordinates saves 6 float subtractions
// per segment, saving valuable CPU cycles
#if ENABLED(USE_RAW_KINEMATICS)
// Get the raw current position as starting point
float raw[ABC] = {
float raw[XYZE] = {
RAW_CURRENT_POSITION(X_AXIS),
RAW_CURRENT_POSITION(Y_AXIS),
RAW_CURRENT_POSITION(Z_AXIS)
RAW_CURRENT_POSITION(Z_AXIS),
current_position[E_AXIS]
};
#define DELTA_E raw[E_AXIS]
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) raw[i] += ADDEND;
#define DELTA_VAR raw
// Delta can inline its kinematics
#if ENABLED(DELTA)
#define DELTA_IK() DELTA_RAW_IK()
#else
@ -8163,11 +8173,12 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#else
// Get the logical current position as starting point
LOOP_XYZE(i) logical[i] = current_position[i];
float logical[XYZE];
memcpy(logical, current_position, sizeof(logical));
#define DELTA_E logical[E_AXIS]
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
#define DELTA_VAR logical
// Delta can inline its kinematics
#if ENABLED(DELTA)
#define DELTA_IK() DELTA_LOGICAL_IK()
#else
@ -8178,16 +8189,26 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#if ENABLED(USE_DELTA_IK_INTERPOLATION)
// Get the starting delta for interpolation
if (segments >= 2) inverse_kinematics(logical);
// Only interpolate XYZ. Advance E normally.
#define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
// Get the starting delta if interpolation is possible
if (segments >= 2) DELTA_IK();
// Loop using decrement
for (uint16_t s = segments + 1; --s;) {
if (s > 1) {
// Are there at least 2 moves left?
if (s >= 2) {
// Save the previous delta for interpolation
float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
// Get the delta 2 segments ahead (rather than the next)
DELTA_NEXT(segment_distance[i] + segment_distance[i]);
// Advance E normally
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
// Get the exact delta for the move after this
DELTA_IK();
// Move to the interpolated delta position first
@ -8195,33 +8216,43 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
logical[E_AXIS], _feedrate_mm_s, active_extruder
DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
);
// Advance E once more for the next move
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
// Do an extra decrement of the loop
--s;
}
else {
// Get the last segment delta (only when segments is odd)
DELTA_NEXT(segment_distance[i])
// Get the last segment delta. (Used when segments is odd)
DELTA_NEXT(segment_distance[i]);
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
DELTA_IK();
}
// Move to the non-interpolated position
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_E, _feedrate_mm_s, active_extruder);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
}
#else
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
// For non-interpolated delta calculate every segment
for (uint16_t s = segments + 1; --s;) {
DELTA_NEXT(segment_distance[i])
DELTA_NEXT(segment_distance[i]);
DELTA_IK();
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
}
#endif
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
inverse_kinematics(ltarget);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
return true;
}