Drop SCARA_FEEDRATE_SCALING

The updated planner takes the length of the move, so this pre-calculation is no longer needed.
This commit is contained in:
Scott Lahteine 2018-03-01 04:30:41 -06:00
parent c1f4112bdc
commit 91db7930dc
3 changed files with 4 additions and 49 deletions

View File

@ -73,7 +73,6 @@
#if ENABLED(MORGAN_SCARA) || ENABLED(MAKERARM_SCARA) #if ENABLED(MORGAN_SCARA) || ENABLED(MAKERARM_SCARA)
//#define DEBUG_SCARA_KINEMATICS //#define DEBUG_SCARA_KINEMATICS
//#define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly
// If movement is choppy try lowering this value // If movement is choppy try lowering this value
#define SCARA_SEGMENTS_PER_SECOND 200 #define SCARA_SEGMENTS_PER_SECOND 200

View File

@ -141,14 +141,6 @@ void plan_arc(
int8_t arc_recalc_count = N_ARC_CORRECTION; int8_t arc_recalc_count = N_ARC_CORRECTION;
#endif #endif
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = 1.0 / (MM_PER_ARC_SEGMENT),
inverse_secs = inv_segment_length * fr_mm_s;
float oldA = stepper.get_axis_position_degrees(A_AXIS),
oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
thermalManager.manage_heater(); thermalManager.manage_heater();
@ -188,26 +180,11 @@ void plan_arc(
clamp_to_software_endstops(raw); clamp_to_software_endstops(raw);
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s.
// i.e., Complete the angular vector in the given time.
inverse_kinematics(raw);
ADJUST_DELTA(raw);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder); planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
#endif
} }
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
#if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(cart);
ADJUST_DELTA(cart);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
#else
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder); planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position

View File

@ -593,14 +593,6 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
// SERIAL_ECHOLNPAIR(" segments=", segments); // SERIAL_ECHOLNPAIR(" segments=", segments);
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm); // SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
inverse_secs = inv_segment_length * _feedrate_mm_s;
float oldA = stepper.get_axis_position_degrees(A_AXIS),
oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
// Get the current position as starting point // Get the current position as starting point
float raw[XYZE]; float raw[XYZE];
COPY(raw, current_position); COPY(raw, current_position);
@ -625,24 +617,11 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
#endif #endif
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, cartesian_segment_mm);
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#endif
} }
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
#if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(rtarget);
ADJUST_DELTA(rtarget);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, cartesian_segment_mm);
#else
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm); planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#endif
return false; // caller will update current_position return false; // caller will update current_position
} }