diff --git a/Marlin/src/module/configuration_store.cpp b/Marlin/src/module/configuration_store.cpp index 2e34fb302..f66649c95 100644 --- a/Marlin/src/module/configuration_store.cpp +++ b/Marlin/src/module/configuration_store.cpp @@ -1008,10 +1008,6 @@ void MarlinSettings::postprocess() { } else { float dummy = 0; - #if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || DISABLED(FWRETRACT_AUTORETRACT) || ENABLED(NO_VOLUMETRICS) - bool dummyb; - #endif - working_crc = 0; // Init to 0. Accumulated by EEPROM_READ _FIELD_TEST(esteppers); @@ -1023,223 +1019,241 @@ void MarlinSettings::postprocess() { // // Planner Motion // + { + // Get only the number of E stepper parameters previously stored + // Any steppers added later are set to their defaults + const uint32_t def1[] = DEFAULT_MAX_ACCELERATION; + const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE; - // Get only the number of E stepper parameters previously stored - // Any steppers added later are set to their defaults - const uint32_t def1[] = DEFAULT_MAX_ACCELERATION; - const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE; + uint32_t tmp1[XYZ + esteppers]; + EEPROM_READ(tmp1); // max_acceleration_mm_per_s2 + EEPROM_READ(planner.settings.min_segment_time_us); - uint32_t tmp1[XYZ + esteppers]; - EEPROM_READ(tmp1); // max_acceleration_mm_per_s2 - EEPROM_READ(planner.settings.min_segment_time_us); + float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers]; + EEPROM_READ(tmp2); // axis_steps_per_mm + EEPROM_READ(tmp3); // max_feedrate_mm_s + if (!validating) LOOP_XYZE_N(i) { + const bool in = (i < esteppers + XYZ); + planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)]; + planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)]; + planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)]; + } - float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers]; - EEPROM_READ(tmp2); // axis_steps_per_mm - EEPROM_READ(tmp3); // max_feedrate_mm_s - if (!validating) LOOP_XYZE_N(i) { - const bool in = (i < esteppers + XYZ); - planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)]; - planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)]; - planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)]; - } + EEPROM_READ(planner.settings.acceleration); + EEPROM_READ(planner.settings.retract_acceleration); + EEPROM_READ(planner.settings.travel_acceleration); + EEPROM_READ(planner.settings.min_feedrate_mm_s); + EEPROM_READ(planner.settings.min_travel_feedrate_mm_s); - EEPROM_READ(planner.settings.acceleration); - EEPROM_READ(planner.settings.retract_acceleration); - EEPROM_READ(planner.settings.travel_acceleration); - EEPROM_READ(planner.settings.min_feedrate_mm_s); - EEPROM_READ(planner.settings.min_travel_feedrate_mm_s); + #if HAS_CLASSIC_JERK + EEPROM_READ(planner.max_jerk); + #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE) + EEPROM_READ(dummy); + #endif + #else + for (uint8_t q = 4; q--;) EEPROM_READ(dummy); + #endif - #if HAS_CLASSIC_JERK - EEPROM_READ(planner.max_jerk); - #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE) + #if ENABLED(JUNCTION_DEVIATION) + EEPROM_READ(planner.junction_deviation_mm); + #else EEPROM_READ(dummy); #endif - #else - for (uint8_t q = 4; q--;) EEPROM_READ(dummy); - #endif - - #if ENABLED(JUNCTION_DEVIATION) - EEPROM_READ(planner.junction_deviation_mm); - #else - EEPROM_READ(dummy); - #endif + } // // Home Offset (M206) // + { + _FIELD_TEST(home_offset); - _FIELD_TEST(home_offset); - - #if !HAS_HOME_OFFSET - float home_offset[XYZ]; - #endif - EEPROM_READ(home_offset); + #if !HAS_HOME_OFFSET + float home_offset[XYZ]; + #endif + EEPROM_READ(home_offset); + } // // Hotend Offsets, if any // - - #if HAS_HOTEND_OFFSET - // Skip hotend 0 which must be 0 - for (uint8_t e = 1; e < HOTENDS; e++) - LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]); - #endif + { + #if HAS_HOTEND_OFFSET + // Skip hotend 0 which must be 0 + for (uint8_t e = 1; e < HOTENDS; e++) + LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]); + #endif + } // // Global Leveling // - - #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - EEPROM_READ(new_z_fade_height); - #else - EEPROM_READ(dummy); - #endif + { + #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) + EEPROM_READ(new_z_fade_height); + #else + EEPROM_READ(dummy); + #endif + } // // Mesh (Manual) Bed Leveling // + { + uint8_t mesh_num_x, mesh_num_y; + EEPROM_READ(dummy); + EEPROM_READ_ALWAYS(mesh_num_x); + EEPROM_READ_ALWAYS(mesh_num_y); - uint8_t mesh_num_x, mesh_num_y; - EEPROM_READ(dummy); - EEPROM_READ_ALWAYS(mesh_num_x); - EEPROM_READ_ALWAYS(mesh_num_y); - - #if ENABLED(MESH_BED_LEVELING) - if (!validating) mbl.z_offset = dummy; - if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { - // EEPROM data fits the current mesh - EEPROM_READ(mbl.z_values); - } - else { - // EEPROM data is stale - if (!validating) mbl.reset(); + #if ENABLED(MESH_BED_LEVELING) + if (!validating) mbl.z_offset = dummy; + if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { + // EEPROM data fits the current mesh + EEPROM_READ(mbl.z_values); + } + else { + // EEPROM data is stale + if (!validating) mbl.reset(); + for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); + } + #else + // MBL is disabled - skip the stored data for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); - } - #else - // MBL is disabled - skip the stored data - for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); - #endif // MESH_BED_LEVELING + #endif // MESH_BED_LEVELING + } - _FIELD_TEST(zprobe_zoffset); + // + // Probe Z Offset + // + { + _FIELD_TEST(zprobe_zoffset); - #if !HAS_BED_PROBE - float zprobe_zoffset; - #endif - EEPROM_READ(zprobe_zoffset); + #if !HAS_BED_PROBE + float zprobe_zoffset; + #endif + EEPROM_READ(zprobe_zoffset); + } // // Planar Bed Leveling matrix // - - #if ABL_PLANAR - EEPROM_READ(planner.bed_level_matrix); - #else - for (uint8_t q = 9; q--;) EEPROM_READ(dummy); - #endif + { + #if ABL_PLANAR + EEPROM_READ(planner.bed_level_matrix); + #else + for (uint8_t q = 9; q--;) EEPROM_READ(dummy); + #endif + } // // Bilinear Auto Bed Leveling // - - uint8_t grid_max_x, grid_max_y; - EEPROM_READ_ALWAYS(grid_max_x); // 1 byte - EEPROM_READ_ALWAYS(grid_max_y); // 1 byte - #if ENABLED(AUTO_BED_LEVELING_BILINEAR) - if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) { - if (!validating) set_bed_leveling_enabled(false); - EEPROM_READ(bilinear_grid_spacing); // 2 ints - EEPROM_READ(bilinear_start); // 2 ints - EEPROM_READ(z_values); // 9 to 256 floats - } - else // EEPROM data is stale - #endif // AUTO_BED_LEVELING_BILINEAR - { - // Skip past disabled (or stale) Bilinear Grid data - int bgs[2], bs[2]; - EEPROM_READ(bgs); - EEPROM_READ(bs); - for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy); - } + { + uint8_t grid_max_x, grid_max_y; + EEPROM_READ_ALWAYS(grid_max_x); // 1 byte + EEPROM_READ_ALWAYS(grid_max_y); // 1 byte + #if ENABLED(AUTO_BED_LEVELING_BILINEAR) + if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) { + if (!validating) set_bed_leveling_enabled(false); + EEPROM_READ(bilinear_grid_spacing); // 2 ints + EEPROM_READ(bilinear_start); // 2 ints + EEPROM_READ(z_values); // 9 to 256 floats + } + else // EEPROM data is stale + #endif // AUTO_BED_LEVELING_BILINEAR + { + // Skip past disabled (or stale) Bilinear Grid data + int bgs[2], bs[2]; + EEPROM_READ(bgs); + EEPROM_READ(bs); + for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy); + } + } // // Unified Bed Leveling active state // + { + _FIELD_TEST(planner_leveling_active); - _FIELD_TEST(planner_leveling_active); - - #if ENABLED(AUTO_BED_LEVELING_UBL) - EEPROM_READ(planner.leveling_active); - EEPROM_READ(ubl.storage_slot); - #else - uint8_t dummyui8; - EEPROM_READ(dummyb); - EEPROM_READ(dummyui8); - #endif // AUTO_BED_LEVELING_UBL + #if ENABLED(AUTO_BED_LEVELING_UBL) + EEPROM_READ(planner.leveling_active); + EEPROM_READ(ubl.storage_slot); + #else + bool planner_leveling_active; + uint8_t ubl_storage_slot; + EEPROM_READ(planner_leveling_active); + EEPROM_READ(ubl_storage_slot); + #endif + } // // SERVO_ANGLES // - #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES) - uint16_t servo_angles[NUM_SERVOS][2]; - #endif - EEPROM_READ(servo_angles); + { + #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES) + uint16_t servo_angles[NUM_SERVOS][2]; + #endif + EEPROM_READ(servo_angles); + } // // DELTA Geometry or Dual Endstops offsets // + { + #if ENABLED(DELTA) - #if ENABLED(DELTA) + _FIELD_TEST(delta_height); - _FIELD_TEST(delta_height); + EEPROM_READ(delta_height); // 1 float + EEPROM_READ(delta_endstop_adj); // 3 floats + EEPROM_READ(delta_radius); // 1 float + EEPROM_READ(delta_diagonal_rod); // 1 float + EEPROM_READ(delta_segments_per_second); // 1 float + EEPROM_READ(delta_calibration_radius); // 1 float + EEPROM_READ(delta_tower_angle_trim); // 3 floats - EEPROM_READ(delta_height); // 1 float - EEPROM_READ(delta_endstop_adj); // 3 floats - EEPROM_READ(delta_radius); // 1 float - EEPROM_READ(delta_diagonal_rod); // 1 float - EEPROM_READ(delta_segments_per_second); // 1 float - EEPROM_READ(delta_calibration_radius); // 1 float - EEPROM_READ(delta_tower_angle_trim); // 3 floats + #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS - #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS + _FIELD_TEST(x2_endstop_adj); - _FIELD_TEST(x2_endstop_adj); + #if ENABLED(X_DUAL_ENDSTOPS) + EEPROM_READ(endstops.x2_endstop_adj); // 1 float + #else + EEPROM_READ(dummy); + #endif + #if ENABLED(Y_DUAL_ENDSTOPS) + EEPROM_READ(endstops.y2_endstop_adj); // 1 float + #else + EEPROM_READ(dummy); + #endif + #if Z_MULTI_ENDSTOPS + EEPROM_READ(endstops.z2_endstop_adj); // 1 float + #else + EEPROM_READ(dummy); + #endif + #if ENABLED(Z_TRIPLE_ENDSTOPS) + EEPROM_READ(endstops.z3_endstop_adj); // 1 float + #else + EEPROM_READ(dummy); + #endif - #if ENABLED(X_DUAL_ENDSTOPS) - EEPROM_READ(endstops.x2_endstop_adj); // 1 float - #else - EEPROM_READ(dummy); #endif - #if ENABLED(Y_DUAL_ENDSTOPS) - EEPROM_READ(endstops.y2_endstop_adj); // 1 float - #else - EEPROM_READ(dummy); - #endif - #if Z_MULTI_ENDSTOPS - EEPROM_READ(endstops.z2_endstop_adj); // 1 float - #else - EEPROM_READ(dummy); - #endif - #if ENABLED(Z_TRIPLE_ENDSTOPS) - EEPROM_READ(endstops.z3_endstop_adj); // 1 float - #else - EEPROM_READ(dummy); - #endif - - #endif + } // // LCD Preheat settings // + { + _FIELD_TEST(lcd_preheat_hotend_temp); - _FIELD_TEST(lcd_preheat_hotend_temp); - - #if DISABLED(ULTIPANEL) - int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2]; - uint8_t lcd_preheat_fan_speed[2]; - #endif - EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats - EEPROM_READ(lcd_preheat_bed_temp); // 2 floats - EEPROM_READ(lcd_preheat_fan_speed); // 2 floats + #if DISABLED(ULTIPANEL) + int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2]; + uint8_t lcd_preheat_fan_speed[2]; + #endif + EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats + EEPROM_READ(lcd_preheat_bed_temp); // 2 floats + EEPROM_READ(lcd_preheat_fan_speed); // 2 floats + } // // Hotend PID