Easier to find 'static inline'
This commit is contained in:
parent
cc0a60453f
commit
a4b0148365
@ -215,7 +215,7 @@ class unified_bed_leveling {
|
||||
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
||||
* the case where the printer is making a vertical line that only crosses horizontal mesh lines.
|
||||
*/
|
||||
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
|
||||
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
|
||||
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
@ -249,7 +249,7 @@ class unified_bed_leveling {
|
||||
//
|
||||
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
||||
//
|
||||
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
|
||||
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
|
||||
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
@ -362,7 +362,7 @@ class unified_bed_leveling {
|
||||
static void line_to_destination_cartesian(const float &fr, const uint8_t e);
|
||||
#endif
|
||||
|
||||
inline static bool mesh_is_valid() {
|
||||
static inline bool mesh_is_valid() {
|
||||
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
||||
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
||||
if (isnan(z_values[x][y])) return false;
|
||||
|
@ -175,10 +175,10 @@ public:
|
||||
FORCE_INLINE static bool has_value() { return value_ptr != NULL; }
|
||||
|
||||
// Seen a parameter with a value
|
||||
inline static bool seenval(const char c) { return seen(c) && has_value(); }
|
||||
static inline bool seenval(const char c) { return seen(c) && has_value(); }
|
||||
|
||||
// Float removes 'E' to prevent scientific notation interpretation
|
||||
inline static float value_float() {
|
||||
static inline float value_float() {
|
||||
if (value_ptr) {
|
||||
char *e = value_ptr;
|
||||
for (;;) {
|
||||
@ -198,8 +198,8 @@ public:
|
||||
}
|
||||
|
||||
// Code value as a long or ulong
|
||||
inline static int32_t value_long() { return value_ptr ? strtol(value_ptr, NULL, 10) : 0L; }
|
||||
inline static uint32_t value_ulong() { return value_ptr ? strtoul(value_ptr, NULL, 10) : 0UL; }
|
||||
static inline int32_t value_long() { return value_ptr ? strtol(value_ptr, NULL, 10) : 0L; }
|
||||
static inline uint32_t value_ulong() { return value_ptr ? strtoul(value_ptr, NULL, 10) : 0UL; }
|
||||
|
||||
// Code value for use as time
|
||||
FORCE_INLINE static millis_t value_millis() { return value_ulong(); }
|
||||
@ -208,10 +208,10 @@ public:
|
||||
// Reduce to fewer bits
|
||||
FORCE_INLINE static int16_t value_int() { return (int16_t)value_long(); }
|
||||
FORCE_INLINE static uint16_t value_ushort() { return (uint16_t)value_long(); }
|
||||
inline static uint8_t value_byte() { return (uint8_t)constrain(value_long(), 0, 255); }
|
||||
static inline uint8_t value_byte() { return (uint8_t)constrain(value_long(), 0, 255); }
|
||||
|
||||
// Bool is true with no value or non-zero
|
||||
inline static bool value_bool() { return !has_value() || !!value_byte(); }
|
||||
static inline bool value_bool() { return !has_value() || !!value_byte(); }
|
||||
|
||||
// Units modes: Inches, Fahrenheit, Kelvin
|
||||
|
||||
@ -220,7 +220,7 @@ public:
|
||||
// Init linear units by constructor
|
||||
GCodeParser() { set_input_linear_units(LINEARUNIT_MM); }
|
||||
|
||||
inline static void set_input_linear_units(const LinearUnit units) {
|
||||
static inline void set_input_linear_units(const LinearUnit units) {
|
||||
switch (units) {
|
||||
case LINEARUNIT_INCH:
|
||||
linear_unit_factor = 25.4f;
|
||||
@ -233,13 +233,13 @@ public:
|
||||
volumetric_unit_factor = POW(linear_unit_factor, 3);
|
||||
}
|
||||
|
||||
inline static float axis_unit_factor(const AxisEnum axis) {
|
||||
static inline float axis_unit_factor(const AxisEnum axis) {
|
||||
return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
|
||||
}
|
||||
|
||||
inline static float value_linear_units() { return value_float() * linear_unit_factor; }
|
||||
inline static float value_axis_units(const AxisEnum axis) { return value_float() * axis_unit_factor(axis); }
|
||||
inline static float value_per_axis_unit(const AxisEnum axis) { return value_float() / axis_unit_factor(axis); }
|
||||
static inline float value_linear_units() { return value_float() * linear_unit_factor; }
|
||||
static inline float value_axis_units(const AxisEnum axis) { return value_float() * axis_unit_factor(axis); }
|
||||
static inline float value_per_axis_unit(const AxisEnum axis) { return value_float() / axis_unit_factor(axis); }
|
||||
|
||||
#else
|
||||
|
||||
@ -251,7 +251,7 @@ public:
|
||||
|
||||
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
||||
|
||||
inline static void set_input_temp_units(TempUnit units) { input_temp_units = units; }
|
||||
static inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
|
||||
|
||||
#if ENABLED(ULTIPANEL) && DISABLED(DISABLE_M503)
|
||||
|
||||
@ -261,7 +261,7 @@ public:
|
||||
FORCE_INLINE static const char* temp_units_name() {
|
||||
return input_temp_units == TEMPUNIT_K ? PSTR("Kelvin") : input_temp_units == TEMPUNIT_F ? PSTR("Fahrenheit") : PSTR("Celsius");
|
||||
}
|
||||
inline static float to_temp_units(const float &f) {
|
||||
static inline float to_temp_units(const float &f) {
|
||||
switch (input_temp_units) {
|
||||
case TEMPUNIT_F:
|
||||
return f * 0.5555555556f + 32;
|
||||
@ -275,7 +275,7 @@ public:
|
||||
|
||||
#endif // ULTIPANEL && !DISABLE_M503
|
||||
|
||||
inline static float value_celsius() {
|
||||
static inline float value_celsius() {
|
||||
const float f = value_float();
|
||||
switch (input_temp_units) {
|
||||
case TEMPUNIT_F:
|
||||
@ -288,7 +288,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
inline static float value_celsius_diff() {
|
||||
static inline float value_celsius_diff() {
|
||||
switch (input_temp_units) {
|
||||
case TEMPUNIT_F:
|
||||
return value_float() * 0.5555555556f;
|
||||
|
@ -82,7 +82,7 @@ class Buzzer {
|
||||
* @brief Resets the state of the class
|
||||
* @details Brings the class state to a known one.
|
||||
*/
|
||||
inline static void reset() {
|
||||
static inline void reset() {
|
||||
off();
|
||||
state.endtime = 0;
|
||||
}
|
||||
|
@ -361,7 +361,7 @@ class Planner {
|
||||
* Returns 1.0 if planner.z_fade_height is 0.0.
|
||||
* Returns 0.0 if Z is past the specified 'Fade Height'.
|
||||
*/
|
||||
inline static float fade_scaling_factor_for_z(const float &rz) {
|
||||
static inline float fade_scaling_factor_for_z(const float &rz) {
|
||||
static float z_fade_factor = 1;
|
||||
if (z_fade_height) {
|
||||
if (rz >= z_fade_height) return 0;
|
||||
|
@ -45,7 +45,7 @@
|
||||
#define SIGMA 0.1f
|
||||
|
||||
// Compute the linear interpolation between two real numbers.
|
||||
inline static float interp(float a, float b, float t) { return (1 - t) * a + t * b; }
|
||||
static inline float interp(const float &a, const float &b, const float &t) { return (1 - t) * a + t * b; }
|
||||
|
||||
/**
|
||||
* Compute a Bézier curve using the De Casteljau's algorithm (see
|
||||
@ -53,21 +53,20 @@ inline static float interp(float a, float b, float t) { return (1 - t) * a + t *
|
||||
* easy to code and has good numerical stability (very important,
|
||||
* since Arudino works with limited precision real numbers).
|
||||
*/
|
||||
inline static float eval_bezier(float a, float b, float c, float d, float t) {
|
||||
float iab = interp(a, b, t);
|
||||
float ibc = interp(b, c, t);
|
||||
float icd = interp(c, d, t);
|
||||
float iabc = interp(iab, ibc, t);
|
||||
float ibcd = interp(ibc, icd, t);
|
||||
float iabcd = interp(iabc, ibcd, t);
|
||||
return iabcd;
|
||||
static inline float eval_bezier(const float &a, const float &b, const float &c, const float &d, const float &t) {
|
||||
const float iab = interp(a, b, t),
|
||||
ibc = interp(b, c, t),
|
||||
icd = interp(c, d, t),
|
||||
iabc = interp(iab, ibc, t),
|
||||
ibcd = interp(ibc, icd, t);
|
||||
return interp(iabc, ibcd, t);
|
||||
}
|
||||
|
||||
/**
|
||||
* We approximate Euclidean distance with the sum of the coordinates
|
||||
* offset (so-called "norm 1"), which is quicker to compute.
|
||||
*/
|
||||
inline static float dist1(float x1, float y1, float x2, float y2) { return ABS(x1 - x2) + ABS(y1 - y2); }
|
||||
static inline float dist1(const float &x1, const float &y1, const float &x2, const float &y2) { return ABS(x1 - x2) + ABS(y1 - y2); }
|
||||
|
||||
/**
|
||||
* The algorithm for computing the step is loosely based on the one in Kig
|
||||
|
@ -435,7 +435,7 @@ class Stepper {
|
||||
#endif
|
||||
|
||||
// Set the current position in steps
|
||||
inline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
|
||||
static inline void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
|
||||
planner.synchronize();
|
||||
const bool was_enabled = STEPPER_ISR_ENABLED();
|
||||
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
@ -443,7 +443,7 @@ class Stepper {
|
||||
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
inline static void set_position(const AxisEnum a, const int32_t &v) {
|
||||
static inline void set_position(const AxisEnum a, const int32_t &v) {
|
||||
planner.synchronize();
|
||||
|
||||
#ifdef __AVR__
|
||||
|
Loading…
x
Reference in New Issue
Block a user