Merge pull request #7770 from thinkyhead/bf2_HAL_cleanups_etc
Some HAL formatting cleanup
This commit is contained in:
commit
baf0bd2b24
@ -4,7 +4,7 @@
|
||||
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
|
||||
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
|
||||
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
|
@ -83,7 +83,7 @@
|
||||
|
||||
//void cli(void);
|
||||
|
||||
//void _delay_ms(int delay);
|
||||
//void _delay_ms(const int delay);
|
||||
|
||||
inline void HAL_clear_reset_source(void) { MCUSR = 0; }
|
||||
inline uint8_t HAL_get_reset_source(void) { return MCUSR; }
|
||||
|
@ -24,7 +24,7 @@
|
||||
* Originally from Arduino Sd2Card Library
|
||||
* Copyright (C) 2009 by William Greiman
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* Description: HAL for AVR - SPI functions
|
||||
*
|
||||
|
@ -393,7 +393,7 @@ static void pwm_details(uint8_t pin) {
|
||||
SERIAL_PROTOCOL_SP(10);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#define PRINT_PORT(p) print_port(p)
|
||||
|
||||
#endif
|
||||
|
@ -1,9 +1,9 @@
|
||||
/* **************************************************************************
|
||||
|
||||
|
||||
Marlin 3D Printer Firmware
|
||||
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
|
||||
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
@ -93,7 +93,7 @@ uint8_t HAL_get_reset_source (void) {
|
||||
}
|
||||
}
|
||||
|
||||
void _delay_ms(int delay_ms) {
|
||||
void _delay_ms(const int delay_ms) {
|
||||
// todo: port for Due?
|
||||
delay(delay_ms);
|
||||
}
|
||||
@ -112,7 +112,7 @@ int freeMemory() {
|
||||
// ADC
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
void HAL_adc_start_conversion(uint8_t adc_pin) {
|
||||
void HAL_adc_start_conversion(const uint8_t adc_pin) {
|
||||
HAL_adc_result = analogRead(adc_pin);
|
||||
}
|
||||
|
||||
|
@ -120,7 +120,7 @@ void HAL_clear_reset_source (void);
|
||||
/** reset reason */
|
||||
uint8_t HAL_get_reset_source (void);
|
||||
|
||||
void _delay_ms(int delay);
|
||||
void _delay_ms(const int delay);
|
||||
|
||||
int freeMemory(void);
|
||||
|
||||
@ -150,7 +150,7 @@ inline void HAL_adc_init(void) {}//todo
|
||||
#define HAL_READ_ADC HAL_adc_result
|
||||
|
||||
|
||||
void HAL_adc_start_conversion (uint8_t adc_pin);
|
||||
void HAL_adc_start_conversion(const uint8_t adc_pin);
|
||||
|
||||
uint16_t HAL_adc_get_result(void);
|
||||
|
||||
|
@ -199,11 +199,11 @@
|
||||
if(spiRate > 6) spiRate = 1;
|
||||
|
||||
#if MB(ALLIGATOR)
|
||||
// Set SPI mode 1, clock, select not active after transfer, with delay between transfers
|
||||
// Set SPI mode 1, clock, select not active after transfer, with delay between transfers
|
||||
SPI_ConfigureNPCS(SPI0, SPI_CHAN_DAC,
|
||||
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
|
||||
SPI_CSR_DLYBCT(1));
|
||||
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
|
||||
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
|
||||
SPI_ConfigureNPCS(SPI0, SPI_CHAN_EEPROM1, SPI_CSR_NCPHA |
|
||||
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
|
||||
SPI_CSR_DLYBCT(1));
|
||||
|
@ -21,7 +21,7 @@
|
||||
*/
|
||||
|
||||
#ifdef ARDUINO_ARCH_SAM
|
||||
|
||||
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(USE_WATCHDOG)
|
||||
|
@ -113,7 +113,7 @@ void HAL_adc_enable_channel(int pin) {
|
||||
};
|
||||
}
|
||||
|
||||
void HAL_adc_start_conversion(uint8_t adc_pin) {
|
||||
void HAL_adc_start_conversion(const uint8_t adc_pin) {
|
||||
if (adc_pin >= (NUM_ANALOG_INPUTS) || adc_pin_map[adc_pin].port == 0xFF) {
|
||||
usb_serial.printf("HAL: HAL_adc_start_conversion: no pinmap for %d\n", adc_pin);
|
||||
return;
|
||||
|
@ -91,7 +91,7 @@ uint8_t spiRec(uint32_t chan);
|
||||
|
||||
void HAL_adc_init(void);
|
||||
void HAL_adc_enable_channel(int pin);
|
||||
void HAL_adc_start_conversion (uint8_t adc_pin);
|
||||
void HAL_adc_start_conversion(const uint8_t adc_pin);
|
||||
uint16_t HAL_adc_get_result(void);
|
||||
|
||||
#endif // _HAL_LPC1768_H
|
||||
|
@ -35,606 +35,301 @@ volatile uint32_t UART0RxQueueWritePos = 0, UART1RxQueueWritePos = 0, UART2RxQue
|
||||
volatile uint32_t UART0RxQueueReadPos = 0, UART1RxQueueReadPos = 0, UART2RxQueueReadPos = 0, UART3RxQueueReadPos = 0;
|
||||
volatile uint8_t dummy;
|
||||
|
||||
void HardwareSerial::begin(uint32_t baudrate) {
|
||||
uint32_t Fdiv;
|
||||
uint32_t pclkdiv, pclk;
|
||||
void HardwareSerial::begin(uint32_t baudrate) {
|
||||
uint32_t Fdiv, pclkdiv, pclk;
|
||||
|
||||
if ( PortNum == 0 )
|
||||
{
|
||||
LPC_PINCON->PINSEL0 &= ~0x000000F0;
|
||||
LPC_PINCON->PINSEL0 |= 0x00000050; /* RxD0 is P0.3 and TxD0 is P0.2 */
|
||||
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
||||
all the peripherals is 1/4 of the SystemFrequency. */
|
||||
/* Bit 6~7 is for UART0 */
|
||||
pclkdiv = (LPC_SC->PCLKSEL0 >> 6) & 0x03;
|
||||
switch ( pclkdiv )
|
||||
{
|
||||
case 0x00:
|
||||
default:
|
||||
pclk = SystemCoreClock/4;
|
||||
break;
|
||||
case 0x01:
|
||||
pclk = SystemCoreClock;
|
||||
break;
|
||||
case 0x02:
|
||||
pclk = SystemCoreClock/2;
|
||||
break;
|
||||
case 0x03:
|
||||
pclk = SystemCoreClock/8;
|
||||
break;
|
||||
}
|
||||
|
||||
LPC_UART0->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
||||
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
||||
LPC_UART0->DLM = Fdiv / 256;
|
||||
LPC_UART0->DLL = Fdiv % 256;
|
||||
LPC_UART0->LCR = 0x03; /* DLAB = 0 */
|
||||
LPC_UART0->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
||||
|
||||
NVIC_EnableIRQ(UART0_IRQn);
|
||||
|
||||
LPC_UART0->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART0 interrupt */
|
||||
}
|
||||
else if ( PortNum == 1 )
|
||||
{
|
||||
LPC_PINCON->PINSEL4 &= ~0x0000000F;
|
||||
LPC_PINCON->PINSEL4 |= 0x0000000A; /* Enable RxD1 P2.1, TxD1 P2.0 */
|
||||
|
||||
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
||||
all the peripherals is 1/4 of the SystemFrequency. */
|
||||
/* Bit 8,9 are for UART1 */
|
||||
pclkdiv = (LPC_SC->PCLKSEL0 >> 8) & 0x03;
|
||||
switch ( pclkdiv )
|
||||
{
|
||||
case 0x00:
|
||||
default:
|
||||
pclk = SystemCoreClock/4;
|
||||
break;
|
||||
case 0x01:
|
||||
pclk = SystemCoreClock;
|
||||
break;
|
||||
case 0x02:
|
||||
pclk = SystemCoreClock/2;
|
||||
break;
|
||||
case 0x03:
|
||||
pclk = SystemCoreClock/8;
|
||||
break;
|
||||
}
|
||||
|
||||
LPC_UART1->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
||||
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
||||
LPC_UART1->DLM = Fdiv / 256;
|
||||
LPC_UART1->DLL = Fdiv % 256;
|
||||
LPC_UART1->LCR = 0x03; /* DLAB = 0 */
|
||||
LPC_UART1->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
||||
|
||||
NVIC_EnableIRQ(UART1_IRQn);
|
||||
|
||||
LPC_UART1->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART1 interrupt */
|
||||
}
|
||||
else if ( PortNum == 2 )
|
||||
{
|
||||
//LPC_PINCON->PINSEL4 &= ~0x000F0000; /*Pinsel4 Bits 16-19*/
|
||||
//LPC_PINCON->PINSEL4 |= 0x000A0000; /* RxD2 is P2.9 and TxD2 is P2.8, value 10*/
|
||||
LPC_PINCON->PINSEL0 &= ~0x00F00000; /*Pinsel0 Bits 20-23*/
|
||||
LPC_PINCON->PINSEL0 |= 0x00500000; /* RxD2 is P0.11 and TxD2 is P0.10, value 01*/
|
||||
|
||||
LPC_SC->PCONP |= 1<<24; //Enable PCUART2
|
||||
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
||||
all the peripherals is 1/4 of the SystemFrequency. */
|
||||
/* Bit 6~7 is for UART3 */
|
||||
pclkdiv = (LPC_SC->PCLKSEL1 >> 16) & 0x03;
|
||||
switch ( pclkdiv )
|
||||
{
|
||||
case 0x00:
|
||||
default:
|
||||
pclk = SystemCoreClock/4;
|
||||
break;
|
||||
case 0x01:
|
||||
pclk = SystemCoreClock;
|
||||
break;
|
||||
case 0x02:
|
||||
pclk = SystemCoreClock/2;
|
||||
break;
|
||||
case 0x03:
|
||||
pclk = SystemCoreClock/8;
|
||||
break;
|
||||
}
|
||||
LPC_UART2->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
||||
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
||||
LPC_UART2->DLM = Fdiv / 256;
|
||||
LPC_UART2->DLL = Fdiv % 256;
|
||||
LPC_UART2->LCR = 0x03; /* DLAB = 0 */
|
||||
LPC_UART2->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
||||
|
||||
NVIC_EnableIRQ(UART2_IRQn);
|
||||
|
||||
LPC_UART2->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
|
||||
}
|
||||
else if ( PortNum == 3 )
|
||||
{
|
||||
LPC_PINCON->PINSEL0 &= ~0x0000000F;
|
||||
LPC_PINCON->PINSEL0 |= 0x0000000A; /* RxD3 is P0.1 and TxD3 is P0.0 */
|
||||
LPC_SC->PCONP |= 1<<4 | 1<<25; //Enable PCUART1
|
||||
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
||||
all the peripherals is 1/4 of the SystemFrequency. */
|
||||
/* Bit 6~7 is for UART3 */
|
||||
pclkdiv = (LPC_SC->PCLKSEL1 >> 18) & 0x03;
|
||||
switch ( pclkdiv )
|
||||
{
|
||||
case 0x00:
|
||||
default:
|
||||
pclk = SystemCoreClock/4;
|
||||
break;
|
||||
case 0x01:
|
||||
pclk = SystemCoreClock;
|
||||
break;
|
||||
case 0x02:
|
||||
pclk = SystemCoreClock/2;
|
||||
break;
|
||||
case 0x03:
|
||||
pclk = SystemCoreClock/8;
|
||||
break;
|
||||
}
|
||||
LPC_UART3->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
||||
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
||||
LPC_UART3->DLM = Fdiv / 256;
|
||||
LPC_UART3->DLL = Fdiv % 256;
|
||||
LPC_UART3->LCR = 0x03; /* DLAB = 0 */
|
||||
LPC_UART3->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
||||
|
||||
NVIC_EnableIRQ(UART3_IRQn);
|
||||
|
||||
LPC_UART3->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
|
||||
}
|
||||
}
|
||||
|
||||
int HardwareSerial::read() {
|
||||
uint8_t rx;
|
||||
if ( PortNum == 0 )
|
||||
{
|
||||
if (UART0RxQueueReadPos == UART0RxQueueWritePos)
|
||||
return -1;
|
||||
|
||||
// Read from "head"
|
||||
rx = UART0Buffer[UART0RxQueueReadPos]; // grab next byte
|
||||
UART0RxQueueReadPos = (UART0RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
||||
return rx;
|
||||
}
|
||||
if ( PortNum == 1 )
|
||||
{
|
||||
if (UART1RxQueueReadPos == UART1RxQueueWritePos)
|
||||
return -1;
|
||||
|
||||
// Read from "head"
|
||||
rx = UART1Buffer[UART1RxQueueReadPos]; // grab next byte
|
||||
UART1RxQueueReadPos = (UART1RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
||||
return rx;
|
||||
}
|
||||
if ( PortNum == 2 )
|
||||
{
|
||||
if (UART2RxQueueReadPos == UART2RxQueueWritePos)
|
||||
return -1;
|
||||
|
||||
// Read from "head"
|
||||
rx = UART2Buffer[UART2RxQueueReadPos]; // grab next byte
|
||||
UART2RxQueueReadPos = (UART2RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
||||
return rx;
|
||||
}
|
||||
if ( PortNum == 3 )
|
||||
{
|
||||
if (UART3RxQueueReadPos == UART3RxQueueWritePos)
|
||||
return -1;
|
||||
|
||||
// Read from "head"
|
||||
rx = UART3Buffer[UART3RxQueueReadPos]; // grab next byte
|
||||
UART3RxQueueReadPos = (UART3RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
||||
return rx;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
size_t HardwareSerial::write(uint8_t send) {
|
||||
if ( PortNum == 0 )
|
||||
{
|
||||
/* THRE status, contain valid data */
|
||||
while ( !(UART0TxEmpty & 0x01) );
|
||||
LPC_UART0->THR = send;
|
||||
UART0TxEmpty = 0; /* not empty in the THR until it shifts out */
|
||||
}
|
||||
else if (PortNum == 1)
|
||||
{
|
||||
|
||||
/* THRE status, contain valid data */
|
||||
while ( !(UART1TxEmpty & 0x01) );
|
||||
LPC_UART1->THR = send;
|
||||
UART1TxEmpty = 0; /* not empty in the THR until it shifts out */
|
||||
|
||||
|
||||
}
|
||||
else if ( PortNum == 2 )
|
||||
{
|
||||
/* THRE status, contain valid data */
|
||||
while ( !(UART2TxEmpty & 0x01) );
|
||||
LPC_UART2->THR = send;
|
||||
UART2TxEmpty = 0; /* not empty in the THR until it shifts out */
|
||||
|
||||
}
|
||||
else if ( PortNum == 3 )
|
||||
{
|
||||
/* THRE status, contain valid data */
|
||||
while ( !(UART3TxEmpty & 0x01) );
|
||||
LPC_UART3->THR = send;
|
||||
UART3TxEmpty = 0; /* not empty in the THR until it shifts out */
|
||||
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int HardwareSerial::available() {
|
||||
if ( PortNum == 0 )
|
||||
{
|
||||
return (UART0RxQueueWritePos + UARTRXQUEUESIZE - UART0RxQueueReadPos) % UARTRXQUEUESIZE;
|
||||
}
|
||||
if ( PortNum == 1 )
|
||||
{
|
||||
return (UART1RxQueueWritePos + UARTRXQUEUESIZE - UART1RxQueueReadPos) % UARTRXQUEUESIZE;
|
||||
}
|
||||
if ( PortNum == 2 )
|
||||
{
|
||||
return (UART2RxQueueWritePos + UARTRXQUEUESIZE - UART2RxQueueReadPos) % UARTRXQUEUESIZE;
|
||||
}
|
||||
if ( PortNum == 3 )
|
||||
{
|
||||
return (UART3RxQueueWritePos + UARTRXQUEUESIZE - UART3RxQueueReadPos) % UARTRXQUEUESIZE;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void HardwareSerial::flush() {
|
||||
if ( PortNum == 0 )
|
||||
{
|
||||
UART0RxQueueWritePos = 0;
|
||||
UART0RxQueueReadPos = 0;
|
||||
|
||||
}
|
||||
if ( PortNum == 1 )
|
||||
{
|
||||
UART1RxQueueWritePos = 0;
|
||||
UART1RxQueueReadPos = 0;
|
||||
}
|
||||
if ( PortNum == 2 )
|
||||
{
|
||||
UART2RxQueueWritePos = 0;
|
||||
UART2RxQueueReadPos = 0;
|
||||
}
|
||||
if ( PortNum == 3 )
|
||||
{
|
||||
UART3RxQueueWritePos = 0;
|
||||
UART3RxQueueReadPos = 0;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void HardwareSerial::printf(const char *format, ...) {
|
||||
static char buffer[256];
|
||||
va_list vArgs;
|
||||
va_start(vArgs, format);
|
||||
int length = vsnprintf((char *) buffer, 256, (char const *) format, vArgs);
|
||||
va_end(vArgs);
|
||||
if (length > 0 && length < 256) {
|
||||
for (int i = 0; i < length;) {
|
||||
write(buffer[i]);
|
||||
++i;
|
||||
}
|
||||
}
|
||||
if (PortNum == 0) {
|
||||
LPC_PINCON->PINSEL0 &= ~0x000000F0;
|
||||
LPC_PINCON->PINSEL0 |= 0x00000050; /* RxD0 is P0.3 and TxD0 is P0.2 */
|
||||
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
||||
all the peripherals is 1/4 of the SystemFrequency. */
|
||||
/* Bit 6~7 is for UART0 */
|
||||
pclkdiv = (LPC_SC->PCLKSEL0 >> 6) & 0x03;
|
||||
switch (pclkdiv) {
|
||||
case 0x00:
|
||||
default:
|
||||
pclk = SystemCoreClock / 4;
|
||||
break;
|
||||
case 0x01:
|
||||
pclk = SystemCoreClock;
|
||||
break;
|
||||
case 0x02:
|
||||
pclk = SystemCoreClock / 2;
|
||||
break;
|
||||
case 0x03:
|
||||
pclk = SystemCoreClock / 8;
|
||||
break;
|
||||
}
|
||||
|
||||
LPC_UART0->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
||||
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
||||
LPC_UART0->DLM = Fdiv / 256;
|
||||
LPC_UART0->DLL = Fdiv % 256;
|
||||
LPC_UART0->LCR = 0x03; /* DLAB = 0 */
|
||||
LPC_UART0->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
||||
|
||||
NVIC_EnableIRQ(UART0_IRQn);
|
||||
|
||||
LPC_UART0->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART0 interrupt */
|
||||
}
|
||||
else if (PortNum == 1) {
|
||||
LPC_PINCON->PINSEL4 &= ~0x0000000F;
|
||||
LPC_PINCON->PINSEL4 |= 0x0000000A; /* Enable RxD1 P2.1, TxD1 P2.0 */
|
||||
|
||||
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
||||
all the peripherals is 1/4 of the SystemFrequency. */
|
||||
/* Bit 8,9 are for UART1 */
|
||||
pclkdiv = (LPC_SC->PCLKSEL0 >> 8) & 0x03;
|
||||
switch (pclkdiv) {
|
||||
case 0x00:
|
||||
default:
|
||||
pclk = SystemCoreClock / 4;
|
||||
break;
|
||||
case 0x01:
|
||||
pclk = SystemCoreClock;
|
||||
break;
|
||||
case 0x02:
|
||||
pclk = SystemCoreClock / 2;
|
||||
break;
|
||||
case 0x03:
|
||||
pclk = SystemCoreClock / 8;
|
||||
break;
|
||||
}
|
||||
|
||||
LPC_UART1->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
||||
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
||||
LPC_UART1->DLM = Fdiv / 256;
|
||||
LPC_UART1->DLL = Fdiv % 256;
|
||||
LPC_UART1->LCR = 0x03; /* DLAB = 0 */
|
||||
LPC_UART1->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
||||
|
||||
NVIC_EnableIRQ(UART1_IRQn);
|
||||
|
||||
LPC_UART1->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART1 interrupt */
|
||||
}
|
||||
else if (PortNum == 2) {
|
||||
//LPC_PINCON->PINSEL4 &= ~0x000F0000; /*Pinsel4 Bits 16-19*/
|
||||
//LPC_PINCON->PINSEL4 |= 0x000A0000; /* RxD2 is P2.9 and TxD2 is P2.8, value 10*/
|
||||
LPC_PINCON->PINSEL0 &= ~0x00F00000; /*Pinsel0 Bits 20-23*/
|
||||
LPC_PINCON->PINSEL0 |= 0x00500000; /* RxD2 is P0.11 and TxD2 is P0.10, value 01*/
|
||||
|
||||
LPC_SC->PCONP |= 1 << 24; //Enable PCUART2
|
||||
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
||||
all the peripherals is 1/4 of the SystemFrequency. */
|
||||
/* Bit 6~7 is for UART3 */
|
||||
pclkdiv = (LPC_SC->PCLKSEL1 >> 16) & 0x03;
|
||||
switch (pclkdiv) {
|
||||
case 0x00:
|
||||
default:
|
||||
pclk = SystemCoreClock / 4;
|
||||
break;
|
||||
case 0x01:
|
||||
pclk = SystemCoreClock;
|
||||
break;
|
||||
case 0x02:
|
||||
pclk = SystemCoreClock / 2;
|
||||
break;
|
||||
case 0x03:
|
||||
pclk = SystemCoreClock / 8;
|
||||
break;
|
||||
}
|
||||
LPC_UART2->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
||||
Fdiv = (pclk / 16) / baudrate; /*baud rate */
|
||||
LPC_UART2->DLM = Fdiv >> 8;
|
||||
LPC_UART2->DLL = Fdiv & 0xFF;
|
||||
LPC_UART2->LCR = 0x03; /* DLAB = 0 */
|
||||
LPC_UART2->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
||||
|
||||
NVIC_EnableIRQ(UART2_IRQn);
|
||||
|
||||
LPC_UART2->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
|
||||
}
|
||||
else if (PortNum == 3) {
|
||||
LPC_PINCON->PINSEL0 &= ~0x0000000F;
|
||||
LPC_PINCON->PINSEL0 |= 0x0000000A; /* RxD3 is P0.1 and TxD3 is P0.0 */
|
||||
LPC_SC->PCONP |= 1 << 4 | 1 << 25; //Enable PCUART1
|
||||
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
||||
all the peripherals is 1/4 of the SystemFrequency. */
|
||||
/* Bit 6~7 is for UART3 */
|
||||
pclkdiv = (LPC_SC->PCLKSEL1 >> 18) & 0x03;
|
||||
switch (pclkdiv) {
|
||||
case 0x00:
|
||||
default:
|
||||
pclk = SystemCoreClock / 4;
|
||||
break;
|
||||
case 0x01:
|
||||
pclk = SystemCoreClock;
|
||||
break;
|
||||
case 0x02:
|
||||
pclk = SystemCoreClock / 2;
|
||||
break;
|
||||
case 0x03:
|
||||
pclk = SystemCoreClock / 8;
|
||||
break;
|
||||
}
|
||||
LPC_UART3->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
||||
Fdiv = (pclk / 16) / baudrate ; /*baud rate */
|
||||
LPC_UART3->DLM = Fdiv >> 8;
|
||||
LPC_UART3->DLL = Fdiv & 0xFF;
|
||||
LPC_UART3->LCR = 0x03; /* DLAB = 0 */
|
||||
LPC_UART3->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
||||
|
||||
NVIC_EnableIRQ(UART3_IRQn);
|
||||
|
||||
LPC_UART3->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
|
||||
}
|
||||
}
|
||||
|
||||
int HardwareSerial::read() {
|
||||
uint8_t rx;
|
||||
if (PortNum == 0) {
|
||||
if (UART0RxQueueReadPos == UART0RxQueueWritePos) return -1;
|
||||
// Read from "head"
|
||||
rx = UART0Buffer[UART0RxQueueReadPos]; // grab next byte
|
||||
UART0RxQueueReadPos = (UART0RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
||||
return rx;
|
||||
}
|
||||
if (PortNum == 1) {
|
||||
if (UART1RxQueueReadPos == UART1RxQueueWritePos) return -1;
|
||||
rx = UART1Buffer[UART1RxQueueReadPos];
|
||||
UART1RxQueueReadPos = (UART1RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
||||
return rx;
|
||||
}
|
||||
if (PortNum == 2) {
|
||||
if (UART2RxQueueReadPos == UART2RxQueueWritePos) return -1;
|
||||
rx = UART2Buffer[UART2RxQueueReadPos];
|
||||
UART2RxQueueReadPos = (UART2RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
||||
return rx;
|
||||
}
|
||||
if (PortNum == 3) {
|
||||
if (UART3RxQueueReadPos == UART3RxQueueWritePos) return -1;
|
||||
rx = UART3Buffer[UART3RxQueueReadPos];
|
||||
UART3RxQueueReadPos = (UART3RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
||||
return rx;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
size_t HardwareSerial::write(uint8_t send) {
|
||||
if (PortNum == 0) {
|
||||
/* THRE status, contain valid data */
|
||||
while (!(UART0TxEmpty & 0x01));
|
||||
LPC_UART0->THR = send;
|
||||
UART0TxEmpty = 0; /* not empty in the THR until it shifts out */
|
||||
}
|
||||
else if (PortNum == 1) {
|
||||
while (!(UART1TxEmpty & 0x01));
|
||||
LPC_UART1->THR = send;
|
||||
UART1TxEmpty = 0;
|
||||
}
|
||||
else if (PortNum == 2) {
|
||||
while (!(UART2TxEmpty & 0x01));
|
||||
LPC_UART2->THR = send;
|
||||
UART2TxEmpty = 0;
|
||||
}
|
||||
else if (PortNum == 3) {
|
||||
while (!(UART3TxEmpty & 0x01));
|
||||
LPC_UART3->THR = send;
|
||||
UART3TxEmpty = 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int HardwareSerial::available() {
|
||||
if (PortNum == 0)
|
||||
return (UART0RxQueueWritePos + UARTRXQUEUESIZE - UART0RxQueueReadPos) % UARTRXQUEUESIZE;
|
||||
if (PortNum == 1)
|
||||
return (UART1RxQueueWritePos + UARTRXQUEUESIZE - UART1RxQueueReadPos) % UARTRXQUEUESIZE;
|
||||
if (PortNum == 2)
|
||||
return (UART2RxQueueWritePos + UARTRXQUEUESIZE - UART2RxQueueReadPos) % UARTRXQUEUESIZE;
|
||||
if (PortNum == 3)
|
||||
return (UART3RxQueueWritePos + UARTRXQUEUESIZE - UART3RxQueueReadPos) % UARTRXQUEUESIZE;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void HardwareSerial::flush() {
|
||||
if (PortNum == 0)
|
||||
UART0RxQueueWritePos = UART0RxQueueReadPos = 0;
|
||||
if (PortNum == 1)
|
||||
UART1RxQueueWritePos = UART1RxQueueReadPos = 0;
|
||||
if (PortNum == 2)
|
||||
UART2RxQueueWritePos = UART2RxQueueReadPos = 0;
|
||||
if (PortNum == 3)
|
||||
UART3RxQueueWritePos = UART3RxQueueReadPos = 0;
|
||||
}
|
||||
|
||||
void HardwareSerial::printf(const char *format, ...) {
|
||||
static char buffer[256];
|
||||
va_list vArgs;
|
||||
va_start(vArgs, format);
|
||||
int length = vsnprintf((char *) buffer, 256, (char const *) format, vArgs);
|
||||
va_end(vArgs);
|
||||
if (length > 0 && length < 256)
|
||||
for (int i = 0; i < length; ++i)
|
||||
write(buffer[i]);
|
||||
}
|
||||
|
||||
/*****************************************************************************
|
||||
** Function name: UARTn_IRQHandler
|
||||
**
|
||||
** Descriptions: UARTn interrupt handler
|
||||
**
|
||||
** parameters: None
|
||||
** Returned value: None
|
||||
**
|
||||
*****************************************************************************/
|
||||
#define DEFINE_UART_HANDLER(NUM) \
|
||||
void UART3_IRQHandler(void) { \
|
||||
uint8_t IIRValue, LSRValue; \
|
||||
uint8_t Dummy = Dummy; \
|
||||
IIRValue = LPC_UART ##NUM## ->IIR; \
|
||||
IIRValue >>= 1; \
|
||||
IIRValue &= 0x07; \
|
||||
switch (IIRValue) { \
|
||||
case IIR_RLS: \
|
||||
LSRValue = LPC_UART ##NUM## ->LSR; \
|
||||
if (LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI)) { \
|
||||
UART ##NUM## Status = LSRValue; \
|
||||
Dummy = LPC_UART ##NUM## ->RBR; \
|
||||
return; \
|
||||
} \
|
||||
if (LSRValue & LSR_RDR) { \
|
||||
if ((UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE != UART ##NUM## RxQueueReadPos) { \
|
||||
UART ##NUM## Buffer[UART ##NUM## RxQueueWritePos] = LPC_UART ##NUM## ->RBR; \
|
||||
UART ##NUM## RxQueueWritePos = (UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE; \
|
||||
} \
|
||||
} \
|
||||
break; \
|
||||
case IIR_RDA: \
|
||||
if ((UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE != UART ##NUM## RxQueueReadPos) { \
|
||||
UART ##NUM## Buffer[UART ##NUM## RxQueueWritePos] = LPC_UART ##NUM## ->RBR; \
|
||||
UART ##NUM## RxQueueWritePos = (UART ##NUM## RxQueueWritePos+1) % UARTRXQUEUESIZE; \
|
||||
} \
|
||||
else \
|
||||
dummy = LPC_UART ##NUM## ->RBR;; \
|
||||
break; \
|
||||
case IIR_CTI: \
|
||||
UART ##NUM## Status |= 0x100; \
|
||||
break; \
|
||||
case IIR_THRE: \
|
||||
LSRValue = LPC_UART ##NUM## ->LSR; \
|
||||
UART ##NUM## TxEmpty = (LSRValue & LSR_THRE) ? 1 : 0; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
typedef void _uart_ ## NUM
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*****************************************************************************
|
||||
** Function name: UART0_IRQHandler
|
||||
**
|
||||
** Descriptions: UART0 interrupt handler
|
||||
**
|
||||
** parameters: None
|
||||
** Returned value: None
|
||||
**
|
||||
*****************************************************************************/
|
||||
void UART0_IRQHandler (void)
|
||||
{
|
||||
uint8_t IIRValue, LSRValue;
|
||||
uint8_t Dummy = Dummy;
|
||||
|
||||
IIRValue = LPC_UART0->IIR;
|
||||
|
||||
IIRValue >>= 1; /* skip pending bit in IIR */
|
||||
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
|
||||
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
|
||||
{
|
||||
LSRValue = LPC_UART0->LSR;
|
||||
/* Receive Line Status */
|
||||
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
|
||||
{
|
||||
/* There are errors or break interrupt */
|
||||
/* Read LSR will clear the interrupt */
|
||||
UART0Status = LSRValue;
|
||||
Dummy = LPC_UART0->RBR; /* Dummy read on RX to clear
|
||||
interrupt, then bail out */
|
||||
return;
|
||||
}
|
||||
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
|
||||
{
|
||||
/* If no error on RLS, normal ready, save into the data buffer. */
|
||||
/* Note: read RBR will clear the interrupt */
|
||||
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos)
|
||||
{
|
||||
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR;
|
||||
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
||||
}
|
||||
else
|
||||
dummy = LPC_UART0->RBR;;
|
||||
}
|
||||
}
|
||||
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
|
||||
{
|
||||
/* Receive Data Available */
|
||||
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos)
|
||||
{
|
||||
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR;
|
||||
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
||||
}
|
||||
else
|
||||
dummy = LPC_UART1->RBR;;
|
||||
}
|
||||
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
|
||||
{
|
||||
/* Character Time-out indicator */
|
||||
UART0Status |= 0x100; /* Bit 9 as the CTI error */
|
||||
}
|
||||
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
|
||||
{
|
||||
/* THRE interrupt */
|
||||
LSRValue = LPC_UART0->LSR; /* Check status in the LSR to see if
|
||||
valid data in U0THR or not */
|
||||
if ( LSRValue & LSR_THRE )
|
||||
{
|
||||
UART0TxEmpty = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
UART0TxEmpty = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*****************************************************************************
|
||||
** Function name: UART1_IRQHandler
|
||||
**
|
||||
** Descriptions: UART1 interrupt handler
|
||||
**
|
||||
** parameters: None
|
||||
** Returned value: None
|
||||
**
|
||||
*****************************************************************************/
|
||||
void UART1_IRQHandler (void)
|
||||
{
|
||||
uint8_t IIRValue, LSRValue;
|
||||
uint8_t Dummy = Dummy;
|
||||
|
||||
IIRValue = LPC_UART1->IIR;
|
||||
|
||||
IIRValue >>= 1; /* skip pending bit in IIR */
|
||||
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
|
||||
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
|
||||
{
|
||||
LSRValue = LPC_UART1->LSR;
|
||||
/* Receive Line Status */
|
||||
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
|
||||
{
|
||||
/* There are errors or break interrupt */
|
||||
/* Read LSR will clear the interrupt */
|
||||
UART1Status = LSRValue;
|
||||
Dummy = LPC_UART1->RBR; /* Dummy read on RX to clear
|
||||
interrupt, then bail out */
|
||||
return;
|
||||
}
|
||||
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
|
||||
{
|
||||
/* If no error on RLS, normal ready, save into the data buffer. */
|
||||
/* Note: read RBR will clear the interrupt */
|
||||
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos)
|
||||
{
|
||||
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR;
|
||||
UART1RxQueueWritePos =(UART1RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
||||
}
|
||||
else
|
||||
dummy = LPC_UART1->RBR;;
|
||||
}
|
||||
}
|
||||
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
|
||||
{
|
||||
/* Receive Data Available */
|
||||
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos)
|
||||
{
|
||||
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR;
|
||||
UART1RxQueueWritePos = (UART1RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
||||
}
|
||||
else
|
||||
dummy = LPC_UART1->RBR;;
|
||||
}
|
||||
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
|
||||
{
|
||||
/* Character Time-out indicator */
|
||||
UART1Status |= 0x100; /* Bit 9 as the CTI error */
|
||||
}
|
||||
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
|
||||
{
|
||||
/* THRE interrupt */
|
||||
LSRValue = LPC_UART1->LSR; /* Check status in the LSR to see if
|
||||
valid data in U0THR or not */
|
||||
if ( LSRValue & LSR_THRE )
|
||||
{
|
||||
UART1TxEmpty = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
UART1TxEmpty = 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
/*****************************************************************************
|
||||
** Function name: UART2_IRQHandler
|
||||
**
|
||||
** Descriptions: UART2 interrupt handler
|
||||
**
|
||||
** parameters: None
|
||||
** Returned value: None
|
||||
**
|
||||
*****************************************************************************/
|
||||
void UART2_IRQHandler (void)
|
||||
{
|
||||
uint8_t IIRValue, LSRValue;
|
||||
uint8_t Dummy = Dummy;
|
||||
|
||||
IIRValue = LPC_UART2->IIR;
|
||||
|
||||
IIRValue >>= 1; /* skip pending bit in IIR */
|
||||
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
|
||||
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
|
||||
{
|
||||
LSRValue = LPC_UART2->LSR;
|
||||
/* Receive Line Status */
|
||||
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
|
||||
{
|
||||
/* There are errors or break interrupt */
|
||||
/* Read LSR will clear the interrupt */
|
||||
UART2Status = LSRValue;
|
||||
Dummy = LPC_UART2->RBR; /* Dummy read on RX to clear
|
||||
interrupt, then bail out */
|
||||
return;
|
||||
}
|
||||
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
|
||||
{
|
||||
/* If no error on RLS, normal ready, save into the data buffer. */
|
||||
/* Note: read RBR will clear the interrupt */
|
||||
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos)
|
||||
{
|
||||
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR;
|
||||
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
|
||||
{
|
||||
/* Receive Data Available */
|
||||
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos)
|
||||
{
|
||||
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR;
|
||||
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
||||
}
|
||||
else
|
||||
dummy = LPC_UART2->RBR;;
|
||||
}
|
||||
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
|
||||
{
|
||||
/* Character Time-out indicator */
|
||||
UART2Status |= 0x100; /* Bit 9 as the CTI error */
|
||||
}
|
||||
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
|
||||
{
|
||||
/* THRE interrupt */
|
||||
LSRValue = LPC_UART2->LSR; /* Check status in the LSR to see if
|
||||
valid data in U0THR or not */
|
||||
if ( LSRValue & LSR_THRE )
|
||||
{
|
||||
UART2TxEmpty = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
UART2TxEmpty = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*****************************************************************************
|
||||
** Function name: UART3_IRQHandler
|
||||
**
|
||||
** Descriptions: UART0 interrupt handler
|
||||
**
|
||||
** parameters: None
|
||||
** Returned value: None
|
||||
**
|
||||
*****************************************************************************/
|
||||
void UART3_IRQHandler (void)
|
||||
{
|
||||
uint8_t IIRValue, LSRValue;
|
||||
uint8_t Dummy = Dummy;
|
||||
|
||||
IIRValue = LPC_UART3->IIR;
|
||||
|
||||
IIRValue >>= 1; /* skip pending bit in IIR */
|
||||
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
|
||||
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
|
||||
{
|
||||
LSRValue = LPC_UART3->LSR;
|
||||
/* Receive Line Status */
|
||||
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
|
||||
{
|
||||
/* There are errors or break interrupt */
|
||||
/* Read LSR will clear the interrupt */
|
||||
UART3Status = LSRValue;
|
||||
Dummy = LPC_UART3->RBR; /* Dummy read on RX to clear
|
||||
interrupt, then bail out */
|
||||
return;
|
||||
}
|
||||
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
|
||||
{
|
||||
/* If no error on RLS, normal ready, save into the data buffer. */
|
||||
/* Note: read RBR will clear the interrupt */
|
||||
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos)
|
||||
{
|
||||
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR;
|
||||
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
|
||||
{
|
||||
/* Receive Data Available */
|
||||
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos)
|
||||
{
|
||||
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR;
|
||||
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
||||
}
|
||||
else
|
||||
dummy = LPC_UART3->RBR;;
|
||||
}
|
||||
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
|
||||
{
|
||||
/* Character Time-out indicator */
|
||||
UART3Status |= 0x100; /* Bit 9 as the CTI error */
|
||||
}
|
||||
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
|
||||
{
|
||||
/* THRE interrupt */
|
||||
LSRValue = LPC_UART3->LSR; /* Check status in the LSR to see if
|
||||
valid data in U0THR or not */
|
||||
if ( LSRValue & LSR_THRE )
|
||||
{
|
||||
UART3TxEmpty = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
UART3TxEmpty = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
DEFINE_UART_HANDLER(0);
|
||||
DEFINE_UART_HANDLER(1);
|
||||
DEFINE_UART_HANDLER(2);
|
||||
DEFINE_UART_HANDLER(3);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // TARGET_LPC1768
|
||||
|
@ -29,30 +29,29 @@
|
||||
|
||||
extern "C" {
|
||||
#include <debug_frmwrk.h>
|
||||
|
||||
//#include <lpc17xx_uart.h>
|
||||
//#include <lpc17xx_uart.h>
|
||||
}
|
||||
|
||||
#define IER_RBR 0x01
|
||||
#define IER_THRE 0x02
|
||||
#define IER_RLS 0x04
|
||||
#define IER_RBR 0x01
|
||||
#define IER_THRE 0x02
|
||||
#define IER_RLS 0x04
|
||||
|
||||
#define IIR_PEND 0x01
|
||||
#define IIR_RLS 0x03
|
||||
#define IIR_RDA 0x02
|
||||
#define IIR_CTI 0x06
|
||||
#define IIR_THRE 0x01
|
||||
#define IIR_PEND 0x01
|
||||
#define IIR_RLS 0x03
|
||||
#define IIR_RDA 0x02
|
||||
#define IIR_CTI 0x06
|
||||
#define IIR_THRE 0x01
|
||||
|
||||
#define LSR_RDR 0x01
|
||||
#define LSR_OE 0x02
|
||||
#define LSR_PE 0x04
|
||||
#define LSR_FE 0x08
|
||||
#define LSR_BI 0x10
|
||||
#define LSR_THRE 0x20
|
||||
#define LSR_TEMT 0x40
|
||||
#define LSR_RXFE 0x80
|
||||
#define LSR_RDR 0x01
|
||||
#define LSR_OE 0x02
|
||||
#define LSR_PE 0x04
|
||||
#define LSR_FE 0x08
|
||||
#define LSR_BI 0x10
|
||||
#define LSR_THRE 0x20
|
||||
#define LSR_TEMT 0x40
|
||||
#define LSR_RXFE 0x80
|
||||
|
||||
#define UARTRXQUEUESIZE 0x10
|
||||
#define UARTRXQUEUESIZE 0x10
|
||||
|
||||
class HardwareSerial : public Stream {
|
||||
private:
|
||||
@ -75,75 +74,35 @@ public:
|
||||
return 0;
|
||||
};
|
||||
|
||||
operator bool() { return true; }
|
||||
|
||||
operator bool() {
|
||||
return true;
|
||||
}
|
||||
void print(const char value[]) { printf("%s" , value); }
|
||||
void print(char value, int = 0) { printf("%c" , value); }
|
||||
void print(unsigned char value, int = 0) { printf("%u" , value); }
|
||||
void print(int value, int = 0) { printf("%d" , value); }
|
||||
void print(unsigned int value, int = 0) { printf("%u" , value); }
|
||||
void print(long value, int = 0) { printf("%ld" , value); }
|
||||
void print(unsigned long value, int = 0) { printf("%lu" , value); }
|
||||
|
||||
void print(const char value[]) {
|
||||
printf("%s" , value);
|
||||
}
|
||||
void print(char value, int = 0) {
|
||||
printf("%c" , value);
|
||||
}
|
||||
void print(unsigned char value, int = 0) {
|
||||
printf("%u" , value);
|
||||
}
|
||||
void print(int value, int = 0) {
|
||||
printf("%d" , value);
|
||||
}
|
||||
void print(unsigned int value, int = 0) {
|
||||
printf("%u" , value);
|
||||
}
|
||||
void print(long value, int = 0) {
|
||||
printf("%ld" , value);
|
||||
}
|
||||
void print(unsigned long value, int = 0) {
|
||||
printf("%lu" , value);
|
||||
}
|
||||
void print(float value, int round = 6) { printf("%f" , value); }
|
||||
void print(double value, int round = 6) { printf("%f" , value ); }
|
||||
|
||||
void print(float value, int round = 6) {
|
||||
printf("%f" , value);
|
||||
}
|
||||
void print(double value, int round = 6) {
|
||||
printf("%f" , value );
|
||||
}
|
||||
|
||||
void println(const char value[]) {
|
||||
printf("%s\n" , value);
|
||||
}
|
||||
void println(char value, int = 0) {
|
||||
printf("%c\n" , value);
|
||||
}
|
||||
void println(unsigned char value, int = 0) {
|
||||
printf("%u\r\n" , value);
|
||||
}
|
||||
void println(int value, int = 0) {
|
||||
printf("%d\n" , value);
|
||||
}
|
||||
void println(unsigned int value, int = 0) {
|
||||
printf("%u\n" , value);
|
||||
}
|
||||
void println(long value, int = 0) {
|
||||
printf("%ld\n" , value);
|
||||
}
|
||||
void println(unsigned long value, int = 0) {
|
||||
printf("%lu\n" , value);
|
||||
}
|
||||
void println(float value, int round = 6) {
|
||||
printf("%f\n" , value );
|
||||
}
|
||||
void println(double value, int round = 6) {
|
||||
printf("%f\n" , value );
|
||||
}
|
||||
void println(void) {
|
||||
print('\n');
|
||||
}
|
||||
void println(const char value[]) { printf("%s\n" , value); }
|
||||
void println(char value, int = 0) { printf("%c\n" , value); }
|
||||
void println(unsigned char value, int = 0) { printf("%u\r\n" , value); }
|
||||
void println(int value, int = 0) { printf("%d\n" , value); }
|
||||
void println(unsigned int value, int = 0) { printf("%u\n" , value); }
|
||||
void println(long value, int = 0) { printf("%ld\n" , value); }
|
||||
void println(unsigned long value, int = 0) { printf("%lu\n" , value); }
|
||||
void println(float value, int round = 6) { printf("%f\n" , value ); }
|
||||
void println(double value, int round = 6) { printf("%f\n" , value ); }
|
||||
void println(void) { print('\n'); }
|
||||
|
||||
};
|
||||
|
||||
//extern HardwareSerial Serial0;
|
||||
//extern HardwareSerial Serial1;
|
||||
//extern HardwareSerial Serial2;
|
||||
extern HardwareSerial Serial3;
|
||||
|
||||
#endif /* MARLIN_SRC_HAL_HAL_SERIAL_H_ */
|
||||
#endif // MARLIN_SRC_HAL_HAL_SERIAL_H_
|
||||
|
@ -27,19 +27,19 @@
|
||||
*/
|
||||
|
||||
/**
|
||||
* This is a hybrid system.
|
||||
* This is a hybrid system.
|
||||
*
|
||||
* The PWM1 module is used to directly control the Servo 0, 1 & 3 pins. This keeps
|
||||
* the pulse width jitter to under a microsecond.
|
||||
*
|
||||
* For all other pins the PWM1 module is used to generate interrupts. The ISR
|
||||
* For all other pins the PWM1 module is used to generate interrupts. The ISR
|
||||
* routine does the actual setting/clearing of pins. The upside is that any pin can
|
||||
* have a PWM channel assigned to it. The downside is that there is more pulse width
|
||||
* jitter. The jitter depends on what else is happening in the system and what ISRs
|
||||
* prempt the PWM ISR. Writing to the SD card can add 20 microseconds to the pulse
|
||||
* width.
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* The data structures are setup to minimize the computation done by the ISR which
|
||||
* minimizes ISR execution time. Execution times are 2.2 - 3.7 microseconds.
|
||||
@ -72,7 +72,7 @@ typedef struct { // holds all data needed to control/init one of the
|
||||
uint16_t PWM_mask; // MASK TO CHECK/WRITE THE IR REGISTER
|
||||
volatile uint32_t* set_register;
|
||||
volatile uint32_t* clr_register;
|
||||
uint32_t write_mask; // USED BY SET/CLEAR COMMANDS
|
||||
uint32_t write_mask; // USED BY SET/CLEAR COMMANDS
|
||||
uint32_t microseconds; // value written to MR register
|
||||
uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register
|
||||
uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register
|
||||
@ -180,7 +180,7 @@ void LPC1768_PWM_init(void) {
|
||||
|
||||
|
||||
bool PWM_table_swap = false; // flag to tell the ISR that the tables have been swapped
|
||||
bool PWM_MR0_wait = false; // flag to ensure don't delay MR0 interrupt
|
||||
bool PWM_MR0_wait = false; // flag to ensure don't delay MR0 interrupt
|
||||
|
||||
|
||||
bool LPC1768_PWM_attach_pin(uint8_t pin, uint32_t min = 1, uint32_t max = (LPC_PWM1_MR0 - MR0_MARGIN), uint8_t servo_index = 0xff) {
|
||||
@ -209,7 +209,7 @@ bool LPC1768_PWM_attach_pin(uint8_t pin, uint32_t min = 1, uint32_t max = (LPC_P
|
||||
//swap tables
|
||||
PWM_MR0_wait = true;
|
||||
while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it.
|
||||
|
||||
|
||||
NVIC_DisableIRQ(PWM1_IRQn);
|
||||
PWM_map *pointer_swap = active_table;
|
||||
active_table = work_table;
|
||||
@ -235,8 +235,8 @@ typedef struct { // status of PWM1 channel
|
||||
uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control
|
||||
} MR_map;
|
||||
|
||||
MR_map map_MR[NUM_PWMS];
|
||||
|
||||
MR_map map_MR[NUM_PWMS];
|
||||
|
||||
void LPC1768_PWM_update_map_MR(void) {
|
||||
map_MR[0] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_4_PWM_channel) ? 1 : 0), 4, &LPC_PWM1->MR1, 0, 0};
|
||||
map_MR[1] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_11_PWM_channel) ? 1 : 0), 11, &LPC_PWM1->MR2, 0, 0};
|
||||
@ -244,7 +244,7 @@ void LPC1768_PWM_update_map_MR(void) {
|
||||
map_MR[3] = {0, 0, 0, &LPC_PWM1->MR4, 0, 0};
|
||||
map_MR[4] = {0, 0, 0, &LPC_PWM1->MR5, 0, 0};
|
||||
map_MR[5] = {0, 0, 0, &LPC_PWM1->MR6, 0, 0};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
uint32_t LPC1768_PWM_interrupt_mask = 1;
|
||||
@ -265,46 +265,46 @@ void LPC1768_PWM_update(void) {
|
||||
}
|
||||
|
||||
LPC1768_PWM_interrupt_mask = 0; // set match registers to new values, build IRQ mask
|
||||
for (uint8_t i = 0; i < NUM_PWMS; i++) {
|
||||
for (uint8_t i = 0; i < NUM_PWMS; i++) {
|
||||
if (work_table[i].active_flag == true) {
|
||||
work_table[i].sequence = i + 1;
|
||||
|
||||
|
||||
// first see if there is a PWM1 controlled pin for this entry
|
||||
bool found = false;
|
||||
for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) {
|
||||
for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) {
|
||||
if ( (map_MR[j].map_PWM_PIN == work_table[i].logical_pin) && map_MR[j].map_PWM_INT ) {
|
||||
*map_MR[j].MR_register = work_table[i].microseconds; // found one of the PWM pins
|
||||
work_table[i].PWM_mask = 0;
|
||||
work_table[i].PCR_bit = map_MR[j].PCR_bit; // PCR register bit to enable PWM1 control of this pin
|
||||
work_table[i].PINSEL3_bits = map_MR[j].PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control} MR_map;
|
||||
map_MR[j].map_used = 2;
|
||||
work_table[i].assigned_MR = j +1; // only used to help in debugging
|
||||
work_table[i].assigned_MR = j +1; // only used to help in debugging
|
||||
found = true;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// didn't find a PWM1 pin so get an interrupt
|
||||
for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) {
|
||||
for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) {
|
||||
if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) {
|
||||
*map_MR[k].MR_register = work_table[i].microseconds; // found one for an interrupt pin
|
||||
map_MR[k].map_used = 1;
|
||||
LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1)); // set bit in the MCR to enable this MR to generate an interrupt
|
||||
work_table[i].PWM_mask = _BV(IR_BIT(k + 1)); // bit in the IR that will go active when this MR generates an interrupt
|
||||
work_table[i].assigned_MR = k +1; // only used to help in debugging
|
||||
work_table[i].assigned_MR = k +1; // only used to help in debugging
|
||||
found = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
work_table[i].sequence = 0;
|
||||
}
|
||||
}
|
||||
LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0); // add in MR0 interrupt
|
||||
|
||||
// swap tables
|
||||
|
||||
|
||||
PWM_MR0_wait = true;
|
||||
while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it.
|
||||
|
||||
|
||||
NVIC_DisableIRQ(PWM1_IRQn);
|
||||
LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
|
||||
PWM_map *pointer_swap = active_table;
|
||||
@ -324,7 +324,7 @@ bool LPC1768_PWM_write(uint8_t pin, uint32_t value) {
|
||||
if (slot == 0xFF) return false; // return error if pin not found
|
||||
|
||||
LPC1768_PWM_update_map_MR();
|
||||
|
||||
|
||||
switch(pin) {
|
||||
case 11: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
|
||||
map_MR[pin_11_PWM_channel - 1].PCR_bit = _BV(8 + pin_11_PWM_channel); // enable PWM1 module control of this pin
|
||||
@ -337,22 +337,22 @@ bool LPC1768_PWM_write(uint8_t pin, uint32_t value) {
|
||||
map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0x2 << 10; // ISR must do this AFTER setting PCR
|
||||
break;
|
||||
case 4: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
|
||||
map_MR[pin_4_PWM_channel - 1].PCR_bit = _BV(8 + pin_4_PWM_channel); // enable PWM1 module control of this pin
|
||||
map_MR[pin_4_PWM_channel - 1].PCR_bit = _BV(8 + pin_4_PWM_channel); // enable PWM1 module control of this pin
|
||||
map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
|
||||
map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0x2 << 4; // ISR must do this AFTER setting PCR
|
||||
break;
|
||||
default: // ISR pins
|
||||
default: // ISR pins
|
||||
pinMode(pin, OUTPUT); // set pin to output but don't write anything in case it's already in use
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);
|
||||
work_table[slot].active_flag = true;
|
||||
|
||||
LPC1768_PWM_update();
|
||||
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool LPC1768_PWM_detach_pin(uint8_t pin) {
|
||||
@ -382,16 +382,16 @@ bool LPC1768_PWM_detach_pin(uint8_t pin) {
|
||||
map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
|
||||
break;
|
||||
case 4: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
|
||||
LPC_PWM1->PCR &= ~(_BV(8 + pin_4_PWM_channel)); // disable PWM1 module control of this pin
|
||||
LPC_PWM1->PCR &= ~(_BV(8 + pin_4_PWM_channel)); // disable PWM1 module control of this pin
|
||||
map_MR[pin_4_PWM_channel - 1].PCR_bit = 0;
|
||||
LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O
|
||||
map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0;
|
||||
map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
pinMode(pin, INPUT);
|
||||
|
||||
|
||||
work_table[slot] = PWM_MAP_INIT_ROW;
|
||||
|
||||
LPC1768_PWM_update();
|
||||
@ -411,8 +411,8 @@ bool LPC1768_PWM_detach_pin(uint8_t pin) {
|
||||
* Changes to PINSEL3, PCR and MCR are only done during the MR0 interrupt otherwise
|
||||
* the wrong pin may be toggled or even have the system hang.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
HAL_PWM_LPC1768_ISR {
|
||||
if (PWM_table_swap) ISR_table = work_table; // use old table if a swap was just done
|
||||
else ISR_table = active_table;
|
||||
@ -422,13 +422,13 @@ HAL_PWM_LPC1768_ISR {
|
||||
if (PWM_table_swap) LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts
|
||||
|
||||
for (uint8_t i = 0; (i < NUM_PWMS) ; i++) {
|
||||
if(ISR_table[i].active_flag && !((ISR_table[i].logical_pin == 11) ||
|
||||
(ISR_table[i].logical_pin == 4) ||
|
||||
(ISR_table[i].logical_pin == 6)))
|
||||
if(ISR_table[i].active_flag && !((ISR_table[i].logical_pin == 11) ||
|
||||
(ISR_table[i].logical_pin == 4) ||
|
||||
(ISR_table[i].logical_pin == 6)))
|
||||
*ISR_table[i].set_register = ISR_table[i].write_mask; // set pins for all enabled interrupt channels active
|
||||
if (PWM_table_swap && ISR_table[i].PCR_bit) {
|
||||
LPC_PWM1->PCR |= ISR_table[i].PCR_bit; // enable PWM1 module control of this pin
|
||||
LPC_PINCON->PINSEL3 |= ISR_table[i].PINSEL3_bits; // set pin mode to PWM1 control - must be done after PCR
|
||||
LPC_PINCON->PINSEL3 |= ISR_table[i].PINSEL3_bits; // set pin mode to PWM1 control - must be done after PCR
|
||||
}
|
||||
}
|
||||
PWM_table_swap = false;
|
||||
@ -442,7 +442,7 @@ HAL_PWM_LPC1768_ISR {
|
||||
*ISR_table[i].clr_register = ISR_table[i].write_mask; // set channel to inactive
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
LPC_PWM1->IR = 0x70F; // guarantees all interrupt flags are cleared which, if there is an unexpected
|
||||
// PWM interrupt, will keep the ISR from hanging which will crash the controller
|
||||
|
||||
@ -457,20 +457,20 @@ return;
|
||||
/**
|
||||
* Almost all changes to the hardware registers must be coordinated with the Match Register 0 (MR0)
|
||||
* interrupt. The only exception is detaching pins. It doesn't matter when they go
|
||||
* tristate.
|
||||
* tristate.
|
||||
*
|
||||
* The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled or
|
||||
* delayed.
|
||||
* The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled or
|
||||
* delayed.
|
||||
*
|
||||
* The PWM_table_swap flag is set when the firmware has swapped in an updated table. It is
|
||||
* cleared by the ISR during the MR0 interrupt as it completes the swap and accompanying updates.
|
||||
* It serves two purposes:
|
||||
* 1) Tells the ISR that the tables have been swapped
|
||||
* 2) Keeps the firmware from starting a new update until the previous one has been completed.
|
||||
* 2) Keeps the firmware from starting a new update until the previous one has been completed.
|
||||
*
|
||||
* The PWM_MR0_wait flag is set when the firmware is ready to swap in an updated table and cleared by
|
||||
* The PWM_MR0_wait flag is set when the firmware is ready to swap in an updated table and cleared by
|
||||
* the ISR during the MR0 interrupt. It is used to avoid delaying the MR0 interrupt when swapping in
|
||||
* an updated table. This avoids glitches in pulse width and/or repetition rate.
|
||||
* an updated table. This avoids glitches in pulse width and/or repetition rate.
|
||||
*
|
||||
* The sequence of events during a write to a PWM channel is:
|
||||
* 1) Waits until PWM_table_swap flag is false before starting
|
||||
@ -489,7 +489,7 @@ return;
|
||||
* writes to the LER register
|
||||
* sets the PWM_table_swap flag active
|
||||
* re-enables the ISR
|
||||
* 7) On the next interrupt the ISR changes its pointer to the work table which is now the old,
|
||||
* 7) On the next interrupt the ISR changes its pointer to the work table which is now the old,
|
||||
* unmodified, active table.
|
||||
* 8) On the next MR0 interrupt the ISR:
|
||||
* switches over to the active table
|
||||
@ -500,4 +500,4 @@ return;
|
||||
* NOTE - PCR must be set before PINSEL
|
||||
* sets the pins controlled by the ISR to their active states
|
||||
*/
|
||||
|
||||
|
||||
|
@ -89,11 +89,11 @@
|
||||
this->servoIndex = INVALID_SERVO; // too many servos
|
||||
}
|
||||
|
||||
int8_t Servo::attach(int pin) {
|
||||
int8_t Servo::attach(const int pin) {
|
||||
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
|
||||
}
|
||||
|
||||
int8_t Servo::attach(int pin, int min, int max) {
|
||||
int8_t Servo::attach(const int pin, const int min, const int max) {
|
||||
|
||||
if (this->servoIndex >= MAX_SERVOS) return -1;
|
||||
|
||||
@ -113,7 +113,7 @@
|
||||
servo_info[this->servoIndex].Pin.isActive = false;
|
||||
}
|
||||
|
||||
void Servo::write(int value) {
|
||||
void Servo::write(const int value) {
|
||||
if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
||||
value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX());
|
||||
// odd - this sets zero degrees to 544 and 180 degrees to 2400 microseconds but the literature says
|
||||
@ -122,7 +122,7 @@
|
||||
this->writeMicroseconds(value);
|
||||
}
|
||||
|
||||
void Servo::writeMicroseconds(int value) {
|
||||
void Servo::writeMicroseconds(const int value) {
|
||||
// calculate and store the values for the given channel
|
||||
byte channel = this->servoIndex;
|
||||
if (channel < MAX_SERVOS) { // ensure channel is valid
|
||||
@ -146,7 +146,7 @@
|
||||
|
||||
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; }
|
||||
|
||||
void Servo::move(int value) {
|
||||
void Servo::move(const int value) {
|
||||
if (this->attach(0) >= 0) { // notice the pin number is zero here
|
||||
this->write(value);
|
||||
delay(SERVO_DELAY);
|
||||
|
@ -39,12 +39,12 @@
|
||||
class Servo {
|
||||
public:
|
||||
Servo();
|
||||
int8_t attach(int pin); // attach the given pin to the next free channel, set pinMode, return channel number (-1 on fail)
|
||||
int8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
|
||||
int8_t attach(const int pin); // attach the given pin to the next free channel, set pinMode, return channel number (-1 on fail)
|
||||
int8_t attach(const int pin, const int min, const int max); // as above but also sets min and max values for writes.
|
||||
void detach();
|
||||
void write(int value); // if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
|
||||
void writeMicroseconds(int value); // write pulse width in microseconds
|
||||
void move(int value); // attach the servo, then move to value
|
||||
void write(const int value); // if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
|
||||
void writeMicroseconds(const int value); // write pulse width in microseconds
|
||||
void move(const int value); // attach the servo, then move to value
|
||||
// if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
|
||||
// if DEACTIVATE_SERVOS_AFTER_MOVE wait SERVO_DELAY, then detach
|
||||
int read(); // returns current pulse width as an angle between 0 and 180 degrees
|
||||
|
@ -88,7 +88,7 @@ static const DELAY_TABLE table[] =
|
||||
/* static */
|
||||
inline void SoftwareSerial::tunedDelay(uint32_t count) {
|
||||
|
||||
asm volatile(
|
||||
asm volatile(
|
||||
|
||||
"mov r3, %[loopsPerMicrosecond] \n\t" //load the initial loop counter
|
||||
"1: \n\t"
|
||||
@ -163,7 +163,7 @@ void SoftwareSerial::recv()
|
||||
// Read each of the 8 bits
|
||||
for (uint8_t i=8; i > 0; --i)
|
||||
{
|
||||
tunedDelay(_rx_delay_intrabit);
|
||||
tunedDelay(_rx_delay_intrabit);
|
||||
d >>= 1;
|
||||
if (rx_pin_read())
|
||||
d |= 0x80;
|
||||
@ -184,9 +184,9 @@ void SoftwareSerial::recv()
|
||||
{
|
||||
_buffer_overflow = true;
|
||||
}
|
||||
tunedDelay(_rx_delay_stopbit);
|
||||
tunedDelay(_rx_delay_stopbit);
|
||||
// Re-enable interrupts when we're sure to be inside the stop bit
|
||||
setRxIntMsk(true);//__enable_irq();//
|
||||
setRxIntMsk(true);//__enable_irq();//
|
||||
|
||||
}
|
||||
}
|
||||
@ -339,7 +339,7 @@ size_t SoftwareSerial::write(uint8_t b)
|
||||
uint16_t delay = _tx_delay;
|
||||
|
||||
if(inv)
|
||||
b = ~b;
|
||||
b = ~b;
|
||||
|
||||
cli(); // turn off interrupts for a clean txmit
|
||||
|
||||
@ -369,7 +369,7 @@ size_t SoftwareSerial::write(uint8_t b)
|
||||
else
|
||||
digitalWrite(_transmitPin, 1);
|
||||
|
||||
sei(); // turn interrupts back on
|
||||
sei(); // turn interrupts back on
|
||||
tunedDelay(delay);
|
||||
|
||||
return 1;
|
||||
|
@ -25,14 +25,15 @@
|
||||
#include <lpc17xx_pinsel.h>
|
||||
#include "HAL.h"
|
||||
#include "../../core/macros.h"
|
||||
#include "../../core/types.h"
|
||||
|
||||
// Interrupts
|
||||
void cli(void) { __disable_irq(); } // Disable
|
||||
void sei(void) { __enable_irq(); } // Enable
|
||||
|
||||
// Time functions
|
||||
void _delay_ms(int delay_ms) {
|
||||
delay (delay_ms);
|
||||
void _delay_ms(const int delay_ms) {
|
||||
delay(delay_ms);
|
||||
}
|
||||
|
||||
uint32_t millis() {
|
||||
@ -72,16 +73,16 @@ void delayMicroseconds(uint32_t us) {
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void delay(int msec) {
|
||||
volatile int32_t end = _millis + msec;
|
||||
SysTick->VAL = SysTick->LOAD; // reset systick counter so next systick is in exactly 1ms
|
||||
// this could extend the time between systicks by upto 1ms
|
||||
while (_millis < end) __WFE();
|
||||
extern "C" void delay(const int msec) {
|
||||
volatile millis_t end = _millis + msec;
|
||||
SysTick->VAL = SysTick->LOAD; // reset systick counter so next systick is in exactly 1ms
|
||||
// this could extend the time between systicks by upto 1ms
|
||||
while PENDING(_millis, end) __WFE();
|
||||
}
|
||||
|
||||
// IO functions
|
||||
// As defined by Arduino INPUT(0x0), OUPUT(0x1), INPUT_PULLUP(0x2)
|
||||
void pinMode(int pin, int mode) {
|
||||
void pinMode(uint8_t pin, uint8_t mode) {
|
||||
if (!WITHIN(pin, 0, NUM_DIGITAL_PINS - 1) || pin_map[pin].port == 0xFF)
|
||||
return;
|
||||
|
||||
@ -109,7 +110,7 @@ void pinMode(int pin, int mode) {
|
||||
}
|
||||
}
|
||||
|
||||
void digitalWrite(int pin, int pin_status) {
|
||||
void digitalWrite(uint8_t pin, uint8_t pin_status) {
|
||||
if (!WITHIN(pin, 0, NUM_DIGITAL_PINS - 1) || pin_map[pin].port == 0xFF)
|
||||
return;
|
||||
|
||||
@ -129,16 +130,14 @@ void digitalWrite(int pin, int pin_status) {
|
||||
*/
|
||||
}
|
||||
|
||||
bool digitalRead(int pin) {
|
||||
bool digitalRead(uint8_t pin) {
|
||||
if (!WITHIN(pin, 0, NUM_DIGITAL_PINS - 1) || pin_map[pin].port == 0xFF) {
|
||||
return false;
|
||||
}
|
||||
return LPC_GPIO(pin_map[pin].port)->FIOPIN & LPC_PIN(pin_map[pin].pin) ? 1 : 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void analogWrite(int pin, int pwm_value) { // 1 - 254: pwm_value, 0: LOW, 255: HIGH
|
||||
void analogWrite(uint8_t pin, int pwm_value) { // 1 - 254: pwm_value, 0: LOW, 255: HIGH
|
||||
|
||||
extern bool LPC1768_PWM_attach_pin(uint8_t, uint32_t, uint32_t, uint8_t);
|
||||
extern bool LPC1768_PWM_write(uint8_t, uint32_t);
|
||||
@ -168,7 +167,7 @@ void analogWrite(int pin, int pwm_value) { // 1 - 254: pwm_value, 0: LOW, 255:
|
||||
|
||||
extern bool HAL_adc_finished();
|
||||
|
||||
uint16_t analogRead(int adc_pin) {
|
||||
uint16_t analogRead(uint8_t adc_pin) {
|
||||
HAL_adc_start_conversion(adc_pin);
|
||||
while (!HAL_adc_finished()); // Wait for conversion to finish
|
||||
return HAL_adc_get_result();
|
||||
|
@ -92,18 +92,18 @@ extern "C" void GpioDisableInt(uint32_t port, uint32_t pin);
|
||||
|
||||
// Time functions
|
||||
extern "C" {
|
||||
void delay(int milis);
|
||||
void delay(const int milis);
|
||||
}
|
||||
void _delay_ms(int delay);
|
||||
void _delay_ms(const int delay);
|
||||
void delayMicroseconds(unsigned long);
|
||||
uint32_t millis();
|
||||
|
||||
//IO functions
|
||||
void pinMode(int pin_number, int mode);
|
||||
void digitalWrite(int pin_number, int pin_status);
|
||||
bool digitalRead(int pin);
|
||||
void analogWrite(int pin_number, int pin_status);
|
||||
uint16_t analogRead(int adc_pin);
|
||||
void pinMode(uint8_t, uint8_t);
|
||||
void digitalWrite(uint8_t, uint8_t);
|
||||
int digitalRead(uint8_t);
|
||||
void analogWrite(uint8_t, int);
|
||||
int analogRead(uint8_t);
|
||||
|
||||
// EEPROM
|
||||
void eeprom_write_byte(unsigned char *pos, unsigned char value);
|
||||
|
@ -33,5 +33,5 @@
|
||||
#else
|
||||
#error Unsupported Platform!
|
||||
#endif
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -1,20 +1,18 @@
|
||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__)
|
||||
|
||||
|
||||
#include "HAL_Servo_Teensy.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
|
||||
int8_t libServo::attach(int pin) {
|
||||
if (this->servoIndex >= MAX_SERVOS) return -1;
|
||||
return Servo::attach(pin);
|
||||
int8_t libServo::attach(const int pin) {
|
||||
if (this->servoIndex >= MAX_SERVOS) return -1;
|
||||
return Servo::attach(pin);
|
||||
}
|
||||
|
||||
int8_t libServo::attach(int pin, int min, int max) {
|
||||
return Servo::attach(pin, min, max);
|
||||
int8_t libServo::attach(const int pin, const int min, const int max) {
|
||||
return Servo::attach(pin, min, max);
|
||||
}
|
||||
|
||||
void libServo::move(int value) {
|
||||
void libServo::move(const int value) {
|
||||
if (this->attach(0) >= 0) {
|
||||
this->write(value);
|
||||
delay(SERVO_DELAY);
|
||||
@ -24,5 +22,4 @@ void libServo::move(int value) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
#endif // __MK64FX512__ || __MK66FX1M0__
|
||||
|
@ -6,13 +6,13 @@
|
||||
// Inherit and expand on the official library
|
||||
class libServo : public Servo {
|
||||
public:
|
||||
int8_t attach(int pin);
|
||||
int8_t attach(int pin, int min, int max);
|
||||
void move(int value);
|
||||
int8_t attach(const int pin);
|
||||
int8_t attach(const int pin, const int min, const int max);
|
||||
void move(const int value);
|
||||
private:
|
||||
uint16_t min_ticks;
|
||||
uint16_t max_ticks;
|
||||
uint8_t servoIndex; // index into the channel data for this servo
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif // HAL_Servo_Teensy_h
|
||||
|
@ -1,9 +1,9 @@
|
||||
/* **************************************************************************
|
||||
|
||||
|
||||
Marlin 3D Printer Firmware
|
||||
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
|
||||
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* **************************************************************************
|
||||
|
||||
|
||||
Marlin 3D Printer Firmware
|
||||
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
|
||||
@ -122,7 +122,7 @@ void HAL_adc_init();
|
||||
|
||||
#define HAL_ANALOG_SELECT(pin) NOOP;
|
||||
|
||||
void HAL_adc_start_conversion(uint8_t adc_pin);
|
||||
void HAL_adc_start_conversion(const uint8_t adc_pin);
|
||||
|
||||
uint16_t HAL_adc_get_result(void);
|
||||
|
||||
|
@ -50,8 +50,8 @@
|
||||
#define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && (P) <= analogInputToDigitalPin(9)) || ((P) >= analogInputToDigitalPin(12) && (P) <= analogInputToDigitalPin(20))
|
||||
|
||||
void HAL_print_analog_pin(char buffer[], int8_t pin) {
|
||||
if (pin <= 23) sprintf(buffer, "(A%2d) ", int(pin - 14));
|
||||
else if (pin <= 39) sprintf(buffer, "(A%2d) ", int(pin - 19));
|
||||
if (pin <= 23) sprintf(buffer, "(A%2d) ", int(pin - 14));
|
||||
else if (pin <= 39) sprintf(buffer, "(A%2d) ", int(pin - 19));
|
||||
}
|
||||
|
||||
void HAL_analog_pin_state(char buffer[], int8_t pin) {
|
||||
|
@ -33,20 +33,20 @@ void spiBegin(void) {
|
||||
|
||||
/** Configure SPI for specified SPI speed */
|
||||
void spiInit(uint8_t spiRate) {
|
||||
// Use datarates Marlin uses
|
||||
uint32_t clock;
|
||||
switch (spiRate) {
|
||||
case SPI_FULL_SPEED: clock = 10000000; break;
|
||||
case SPI_HALF_SPEED: clock = 5000000; break;
|
||||
case SPI_QUARTER_SPEED: clock = 2500000; break;
|
||||
case SPI_EIGHTH_SPEED: clock = 1250000; break;
|
||||
case SPI_SPEED_5: clock = 625000; break;
|
||||
case SPI_SPEED_6: clock = 312500; break;
|
||||
// Use datarates Marlin uses
|
||||
uint32_t clock;
|
||||
switch (spiRate) {
|
||||
case SPI_FULL_SPEED: clock = 10000000; break;
|
||||
case SPI_HALF_SPEED: clock = 5000000; break;
|
||||
case SPI_QUARTER_SPEED: clock = 2500000; break;
|
||||
case SPI_EIGHTH_SPEED: clock = 1250000; break;
|
||||
case SPI_SPEED_5: clock = 625000; break;
|
||||
case SPI_SPEED_6: clock = 312500; break;
|
||||
default:
|
||||
clock = 4000000; // Default from the SPI libarary
|
||||
}
|
||||
spiConfig = SPISettings(clock, MSBFIRST, SPI_MODE0);
|
||||
SPI.begin();
|
||||
clock = 4000000; // Default from the SPI libarary
|
||||
}
|
||||
spiConfig = SPISettings(clock, MSBFIRST, SPI_MODE0);
|
||||
SPI.begin();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
@ -1,9 +1,9 @@
|
||||
/* **************************************************************************
|
||||
|
||||
|
||||
Marlin 3D Printer Firmware
|
||||
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
|
||||
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
|
@ -1,5 +1,5 @@
|
||||
/* **************************************************************************
|
||||
|
||||
|
||||
Marlin 3D Printer Firmware
|
||||
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
|
||||
|
@ -21,20 +21,13 @@
|
||||
*/
|
||||
|
||||
/**
|
||||
This code contributed by Triffid_Hunter and modified by Kliment
|
||||
why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
|
||||
*/
|
||||
|
||||
/**
|
||||
* Description: Fast IO functions for Teensy 3.5 and Teensy 3.6
|
||||
* Fast I/O Routines for Teensy 3.5 and Teensy 3.6
|
||||
* Use direct port manipulation to save scads of processor time.
|
||||
* Contributed by Triffid_Hunter. Modified by Kliment and the Marlin team.
|
||||
*/
|
||||
|
||||
#ifndef _FASTIO_TEENSY_H
|
||||
#define _FASTIO_TEENSY_H
|
||||
|
||||
/**
|
||||
utility functions
|
||||
*/
|
||||
#ifndef _FASTIO_TEENSY_H
|
||||
#define _FASTIO_TEENSY_H
|
||||
|
||||
#ifndef MASK
|
||||
#define MASK(PIN) (1 << PIN)
|
||||
@ -44,77 +37,50 @@
|
||||
#define GPIO_BITBAND(reg, bit) (*(uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
|
||||
|
||||
/**
|
||||
magic I/O routines
|
||||
now you can simply SET_OUTPUT(STEP); WRITE(STEP, 1); WRITE(STEP, 0);
|
||||
*/
|
||||
* Magic I/O routines
|
||||
*
|
||||
* Now you can simply SET_OUTPUT(PIN); WRITE(PIN, HIGH); WRITE(PIN, LOW);
|
||||
*
|
||||
* Why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
|
||||
*/
|
||||
|
||||
/// Read a pin
|
||||
#define _READ(p) ((bool)(CORE_PIN ## p ## _PINREG & CORE_PIN ## p ## _BITMASK))
|
||||
|
||||
/// Write to a pin
|
||||
#define _WRITE(p, v) do { if (v) CORE_PIN ## p ## _PORTSET = CORE_PIN ## p ## _BITMASK; \
|
||||
else CORE_PIN ## p ## _PORTCLEAR = CORE_PIN ## p ## _BITMASK; } while (0)
|
||||
|
||||
/// toggle a pin
|
||||
#define _TOGGLE(p) (*(&(CORE_PIN ## p ## _PORTCLEAR)+1) = CORE_PIN ## p ## _BITMASK)
|
||||
#define _SET_INPUT(p) do { CORE_PIN ## p ## _CONFIG = PORT_PCR_MUX(1); \
|
||||
GPIO_BITBAND(CORE_PIN ## p ## _DDRREG , CORE_PIN ## p ## _BIT) = 0; \
|
||||
} while (0)
|
||||
#define _SET_OUTPUT(p) do { CORE_PIN ## p ## _CONFIG = PORT_PCR_MUX(1)|PORT_PCR_SRE|PORT_PCR_DSE; \
|
||||
GPIO_BITBAND(CORE_PIN ## p ## _DDRREG , CORE_PIN ## p ## _BIT) = 1; \
|
||||
} while (0)
|
||||
|
||||
/// set pin as input
|
||||
#define _SET_INPUT(p) do { CORE_PIN ## p ## _CONFIG = PORT_PCR_MUX(1); \
|
||||
GPIO_BITBAND(CORE_PIN ## p ## _DDRREG , CORE_PIN ## p ## _BIT) = 0; \
|
||||
} while (0)
|
||||
/// set pin as output
|
||||
#define _SET_OUTPUT(p) do { CORE_PIN ## p ## _CONFIG = PORT_PCR_MUX(1)|PORT_PCR_SRE|PORT_PCR_DSE; \
|
||||
GPIO_BITBAND(CORE_PIN ## p ## _DDRREG , CORE_PIN ## p ## _BIT) = 1; \
|
||||
} while (0)
|
||||
|
||||
/// set pin as input with pullup mode
|
||||
//#define _PULLUP(IO, v) { pinMode(IO, (v!=LOW ? INPUT_PULLUP : INPUT)); }
|
||||
|
||||
/// check if pin is an input
|
||||
#define _GET_INPUT(p) ((CORE_PIN ## p ## _DDRREG & CORE_PIN ## p ## _BITMASK) == 0)
|
||||
/// check if pin is an output
|
||||
#define _GET_OUTPUT(p) ((CORE_PIN ## p ## _DDRREG & CORE_PIN ## p ## _BITMASK) == 0)
|
||||
|
||||
/// check if pin is an timer
|
||||
//#define _GET_TIMER(IO)
|
||||
|
||||
// why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
|
||||
|
||||
/// Read a pin wrapper
|
||||
#define READ(IO) _READ(IO)
|
||||
|
||||
/// Write to a pin wrapper
|
||||
#define WRITE_VAR(IO, v) _WRITE_VAR(IO, v)
|
||||
#define WRITE(IO, v) _WRITE(IO, v)
|
||||
|
||||
/// toggle a pin wrapper
|
||||
#define TOGGLE(IO) _TOGGLE(IO)
|
||||
|
||||
/// set pin as input wrapper
|
||||
#define SET_INPUT(IO) _SET_INPUT(IO)
|
||||
/// set pin as input with pullup wrapper
|
||||
#define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _WRITE(IO, HIGH); }while(0)
|
||||
/// set pin as output wrapper
|
||||
#define SET_OUTPUT(IO) _SET_OUTPUT(IO)
|
||||
|
||||
/// check if pin is an input wrapper
|
||||
#define GET_INPUT(IO) _GET_INPUT(IO)
|
||||
/// check if pin is an output wrapper
|
||||
#define GET_OUTPUT(IO) _GET_OUTPUT(IO)
|
||||
|
||||
// Shorthand
|
||||
#define OUT_WRITE(IO, v) { SET_OUTPUT(IO); WRITE(IO, v); }
|
||||
|
||||
/**
|
||||
ports and functions
|
||||
|
||||
added as necessary or if I feel like it- not a comprehensive list!
|
||||
*/
|
||||
|
||||
/**
|
||||
pins
|
||||
*/
|
||||
* Ports, functions, and pins
|
||||
*/
|
||||
|
||||
#define DIO0_PIN 8
|
||||
|
||||
#endif /* _FASTIO_TEENSY_H */
|
||||
#endif /* _FASTIO_TEENSY_H */
|
||||
|
@ -23,9 +23,9 @@
|
||||
#ifndef SPI_PINS_H_
|
||||
#define SPI_PINS_H_
|
||||
|
||||
#define SCK_PIN 13
|
||||
#define MISO_PIN 12
|
||||
#define MOSI_PIN 11
|
||||
#define SS_PIN 20 //SDSS // A.28, A.29, B.21, C.26, C.29
|
||||
#define SCK_PIN 13
|
||||
#define MISO_PIN 12
|
||||
#define MOSI_PIN 11
|
||||
#define SS_PIN 20 //SDSS // A.28, A.29, B.21, C.26, C.29
|
||||
|
||||
#endif /* SPI_PINS_H_ */
|
||||
|
@ -21,19 +21,19 @@
|
||||
*/
|
||||
|
||||
#if defined(__MK64FX512__) || defined(__MK66FX1M0__)
|
||||
|
||||
#include "../../Marlin.h"
|
||||
|
||||
#if ENABLED(USE_WATCHDOG)
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#include "watchdog_Teensy.h"
|
||||
#if ENABLED(USE_WATCHDOG)
|
||||
|
||||
void watchdog_init() {
|
||||
WDOG_TOVALH = 0;
|
||||
WDOG_TOVALL = 4000;
|
||||
WDOG_STCTRLH = WDOG_STCTRLH_WDOGEN;
|
||||
}
|
||||
#include "watchdog_Teensy.h"
|
||||
|
||||
#endif //USE_WATCHDOG
|
||||
void watchdog_init() {
|
||||
WDOG_TOVALH = 0;
|
||||
WDOG_TOVALL = 4000;
|
||||
WDOG_STCTRLH = WDOG_STCTRLH_WDOGEN;
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif // USE_WATCHDOG
|
||||
|
||||
#endif // __MK64FX512__ || __MK66FX1M0__
|
||||
|
@ -1392,9 +1392,9 @@
|
||||
|
||||
#define MAX7219_DEBUG
|
||||
#if ENABLED(MAX7219_DEBUG)
|
||||
#define MAX7219_CLK_PIN 64 // 77 on Re-ARM // Configuration of the 3 pins to control the display
|
||||
#define MAX7219_DIN_PIN 57 // 78 on Re-ARM
|
||||
#define MAX7219_LOAD_PIN 44 // 79 on Re-ARM
|
||||
#define MAX7219_CLK_PIN 64 // 77 on Re-ARM // Configuration of the 3 pins to control the display
|
||||
#define MAX7219_DIN_PIN 57 // 78 on Re-ARM
|
||||
#define MAX7219_LOAD_PIN 44 // 79 on Re-ARM
|
||||
|
||||
/**
|
||||
* Sample debug features
|
||||
|
@ -26,7 +26,7 @@
|
||||
|
||||
uint8_t case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
|
||||
bool case_light_on = CASE_LIGHT_DEFAULT_ON;
|
||||
|
||||
|
||||
#ifndef INVERT_CASE_LIGHT
|
||||
#define INVERT_CASE_LIGHT false
|
||||
#endif
|
||||
|
@ -74,7 +74,7 @@ void dac084s085::setValue(uint8_t channel, uint8_t value) {
|
||||
|
||||
externalDac_buf[0] |= (value >> 4);
|
||||
externalDac_buf[1] |= (value << 4);
|
||||
|
||||
|
||||
// All SPI chip-select HIGH
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
#if EXTRUDERS > 1
|
||||
|
@ -375,7 +375,7 @@ void GcodeSuite::G33() {
|
||||
float a_sum = 0.0;
|
||||
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
|
||||
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
|
||||
|
||||
|
||||
// adjust delta_height and endstops by the max amount
|
||||
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
||||
home_offset[Z_AXIS] -= z_temp;
|
||||
|
@ -142,13 +142,13 @@ uint8_t u8g_dev_st7565_64128n_2x_VIKI_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg
|
||||
ST7565_WRITE_BYTE(0x40); // Display start line for Displaytech 64128N
|
||||
|
||||
ST7565_WRITE_BYTE(0x28 | 0x04); // power control: turn on voltage converter
|
||||
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used
|
||||
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used
|
||||
|
||||
ST7565_WRITE_BYTE(0x28 | 0x06); // power control: turn on voltage regulator
|
||||
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used
|
||||
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used
|
||||
|
||||
ST7565_WRITE_BYTE(0x28 | 0x07); // power control: turn on voltage follower
|
||||
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used
|
||||
//U8G_ESC_DLY(50); // delay 50 ms - hangs after a reset if used
|
||||
|
||||
ST7565_WRITE_BYTE(0x10); // Set V0 voltage resistor ratio. Setting for controlling brightness of Displaytech 64128N
|
||||
|
||||
@ -228,12 +228,12 @@ u8g_dev_t u8g_dev_st7565_64128n_2x_VIKI_sw_spi = { u8g_dev_st7565_64128n_2x_VIKI
|
||||
|
||||
class U8GLIB_ST7565_64128n_2x_VIKI : public U8GLIB {
|
||||
public:
|
||||
U8GLIB_ST7565_64128n_2x_VIKI(uint8_t dummy)
|
||||
: U8GLIB(&u8g_dev_st7565_64128n_2x_VIKI_sw_spi)
|
||||
U8GLIB_ST7565_64128n_2x_VIKI(uint8_t dummy)
|
||||
: U8GLIB(&u8g_dev_st7565_64128n_2x_VIKI_sw_spi)
|
||||
{ }
|
||||
U8GLIB_ST7565_64128n_2x_VIKI(uint8_t sck, uint8_t mosi, uint8_t cs, uint8_t a0, uint8_t reset = U8G_PIN_NONE)
|
||||
: U8GLIB(&u8g_dev_st7565_64128n_2x_VIKI_sw_spi)
|
||||
{ }
|
||||
U8GLIB_ST7565_64128n_2x_VIKI(uint8_t sck, uint8_t mosi, uint8_t cs, uint8_t a0, uint8_t reset = U8G_PIN_NONE)
|
||||
: U8GLIB(&u8g_dev_st7565_64128n_2x_VIKI_sw_spi)
|
||||
{ }
|
||||
};
|
||||
|
||||
#pragma GCC reset_options
|
||||
|
@ -176,9 +176,9 @@
|
||||
//U8GLIB_LM6059 u8g(DOGLCD_CS, DOGLCD_A0); // 8 stripes
|
||||
U8GLIB_LM6059_2X u8g(DOGLCD_CS, DOGLCD_A0); // 4 stripes
|
||||
#elif ENABLED(U8GLIB_ST7565_64128N)
|
||||
// The MaKrPanel, Mini Viki, and Viki 2.0, ST7565 controller
|
||||
//U8GLIB_ST7565_64128n_2x_VIKI u8g(0); // using SW-SPI DOGLCD_MOSI != -1 && DOGLCD_SCK
|
||||
U8GLIB_ST7565_64128n_2x_VIKI u8g(DOGLCD_SCK, DOGLCD_MOSI, DOGLCD_CS, DOGLCD_A0); // using SW-SPI
|
||||
// The MaKrPanel, Mini Viki, and Viki 2.0, ST7565 controller
|
||||
//U8GLIB_ST7565_64128n_2x_VIKI u8g(0); // using SW-SPI DOGLCD_MOSI != -1 && DOGLCD_SCK
|
||||
U8GLIB_ST7565_64128n_2x_VIKI u8g(DOGLCD_SCK, DOGLCD_MOSI, DOGLCD_CS, DOGLCD_A0); // using SW-SPI
|
||||
//U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0); // 8 stripes
|
||||
//U8GLIB_NHD_C12864_2X u8g(DOGLCD_CS, DOGLCD_A0); // 4 stripes HWSPI
|
||||
#elif ENABLED(U8GLIB_SSD1306)
|
||||
|
@ -302,7 +302,7 @@ class Stepper {
|
||||
#endif
|
||||
|
||||
#ifdef CPU_32_BIT
|
||||
// In case of high-performance processor, it is able to calculate in real-time
|
||||
// In case of high-performance processor, it is able to calculate in real-time
|
||||
timer = (uint32_t)(HAL_STEPPER_TIMER_RATE) / step_rate;
|
||||
if (timer < (HAL_STEPPER_TIMER_RATE / (STEP_DOUBLER_FREQUENCY * 2))) { // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen)
|
||||
timer = (HAL_STEPPER_TIMER_RATE / (STEP_DOUBLER_FREQUENCY * 2));
|
||||
|
@ -45,7 +45,7 @@
|
||||
#define IS_RAMPS_EFF
|
||||
#elif MB(RAMPS_13_EEF) || MB(RAMPS_14_EEF) || MB(RAMPS_14_RE_ARM_EEF) || MB(RAMPS_SMART_EEF) || MB(RAMPS_DUO_EEF) || MB(RAMPS4DUE_EEF)
|
||||
#define IS_RAMPS_EEF
|
||||
#elif MB(RAMPS_13_SF) || MB(RAMPS_14_SF) || MB(RAMPS_14_RE_ARM_SF) || MB(RAMPS_SMART_SF) || MB(RAMPS_DUO_SF) || MB(RAMPS4DUE_SF)
|
||||
#elif MB(RAMPS_13_SF) || MB(RAMPS_14_SF) || MB(RAMPS_14_RE_ARM_SF) || MB(RAMPS_SMART_SF) || MB(RAMPS_DUO_SF) || MB(RAMPS4DUE_SF)
|
||||
#define IS_RAMPS_SF
|
||||
#endif
|
||||
|
||||
|
@ -358,7 +358,7 @@
|
||||
#endif
|
||||
#if PIN_EXISTS(FAN)
|
||||
REPORT_NAME_DIGITAL(FAN_PIN, __LINE__ )
|
||||
#endif
|
||||
#endif
|
||||
#if PIN_EXISTS(FAN1)
|
||||
REPORT_NAME_DIGITAL(FAN1_PIN, __LINE__ )
|
||||
#endif
|
||||
|
@ -123,7 +123,7 @@
|
||||
|
||||
#define BTN_EN1 50
|
||||
#define BTN_EN2 52
|
||||
#define BTN_ENC 48
|
||||
#define BTN_ENC 48
|
||||
|
||||
#define SDSS 4
|
||||
#define SD_DETECT_PIN 14
|
||||
@ -135,9 +135,9 @@
|
||||
#define BTN_EN1 50
|
||||
#define BTN_EN2 52
|
||||
#define BTN_ENC 48
|
||||
|
||||
|
||||
#define BTN_BACK 71
|
||||
|
||||
|
||||
#undef SDSS
|
||||
#define SDSS 4
|
||||
#define SD_DETECT_PIN 14
|
||||
|
@ -115,7 +115,7 @@
|
||||
|
||||
#define BTN_EN1 50
|
||||
#define BTN_EN2 52
|
||||
#define BTN_ENC 48
|
||||
#define BTN_ENC 48
|
||||
|
||||
#define SDSS 4
|
||||
#define SD_DETECT_PIN 14
|
||||
@ -127,9 +127,9 @@
|
||||
#define BTN_EN1 50
|
||||
#define BTN_EN2 52
|
||||
#define BTN_ENC 48
|
||||
|
||||
|
||||
#define BTN_BACK 71
|
||||
|
||||
|
||||
#undef SDSS
|
||||
#define SDSS 4
|
||||
#define SD_DETECT_PIN 14
|
||||
|
@ -46,8 +46,8 @@
|
||||
|
||||
#if ENABLED(IS_REARM)
|
||||
#error "Oops! use 'pins_RAMPS_RE_ARM.h' when Re-Arm is used."
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if !ENABLED(IS_RAMPS_SMART) && !ENABLED(IS_RAMPS_DUO) && !ENABLED(IS_RAMPS4DUE) && !ENABLED(TARGET_LPC1768)
|
||||
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
|
||||
#error "Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu."
|
||||
|
@ -248,12 +248,12 @@
|
||||
#define DOGLCD_CS 63 // J5-3 & AUX-2
|
||||
|
||||
#ifdef ULTIPANEL
|
||||
|
||||
|
||||
#define LCD_PINS_D5 71 // ENET_MDIO
|
||||
#define LCD_PINS_D6 73 // ENET_RX_ER
|
||||
#define LCD_PINS_D7 75 // ENET_RXD1
|
||||
#endif
|
||||
|
||||
|
||||
#if ENABLED(NEWPANEL)
|
||||
#if ENABLED(REPRAPWORLD_KEYPAD)
|
||||
#define SHIFT_OUT 51 // (MOSI) J3-10 & AUX-3
|
||||
@ -287,12 +287,12 @@
|
||||
|
||||
#if ENABLED(VIKI2) || ENABLED(miniVIKI)
|
||||
// #define LCD_SCREEN_ROT_180
|
||||
|
||||
|
||||
#define SOFTWARE_SPI // temp to see if it fixes the "not found" error
|
||||
|
||||
|
||||
#undef BEEPER_PIN
|
||||
#define BEEPER_PIN 37 // may change if cable changes
|
||||
|
||||
|
||||
#define BTN_EN1 31 // J3-2 & AUX-4
|
||||
#define BTN_EN2 33 // J3-4 & AUX-4
|
||||
#define BTN_ENC 35 // J3-3 & AUX-4
|
||||
@ -301,7 +301,7 @@
|
||||
#define KILL_PIN 41 // J5-4 & AUX-4
|
||||
|
||||
#undef DOGLCD_CS
|
||||
#define DOGLCD_CS 16
|
||||
#define DOGLCD_CS 16
|
||||
#undef LCD_BACKLIGHT_PIN //16 // J3-7 & AUX-4 - only used on DOGLCD controllers
|
||||
#undef LCD_PINS_ENABLE //51 // (MOSI) J3-10 & AUX-3
|
||||
#undef LCD_PINS_D4 //52 // (SCK) J3-9 & AUX-3
|
||||
@ -310,9 +310,9 @@
|
||||
#define DOGLCD_A0 59 // J3-8 & AUX-2
|
||||
#undef LCD_PINS_D6 //63 // J5-3 & AUX-2
|
||||
#undef LCD_PINS_D7 //6 // (SERVO1) J5-1 & SERVO connector
|
||||
#define DOGLCD_SCK SCK_PIN
|
||||
#define DOGLCD_SCK SCK_PIN
|
||||
#define DOGLCD_MOSI MOSI_PIN
|
||||
|
||||
|
||||
#define STAT_LED_BLUE_PIN 63 // may change if cable changes
|
||||
#define STAT_LED_RED_PIN 6 // may change if cable changes
|
||||
#endif
|
||||
@ -320,8 +320,8 @@
|
||||
//#define MOSI_PIN 51 // system defined J3-10 & AUX-3
|
||||
//#define SCK_PIN 52 // system defined J3-9 & AUX-3
|
||||
//#define SS_PIN 53 // system defined J3-5 & AUX-3 - sometimes called SDSS
|
||||
|
||||
|
||||
|
||||
|
||||
#if ENABLED(MINIPANEL)
|
||||
// GLCD features
|
||||
//#define LCD_CONTRAST 190
|
||||
|
@ -2,7 +2,7 @@
|
||||
* Teensy 3.5 (MK64FX512) and Teensy 3.6 (MK66FX1M0) Breadboard pin assignments
|
||||
* Requires the Teensyduino software with Teensy 3.5 or Teensy 3.6 selected in Arduino IDE!
|
||||
* http://www.pjrc.com/teensy/teensyduino.html
|
||||
*
|
||||
*
|
||||
****************************************************************************************/
|
||||
#if MOTHERBOARD == 841 // BOARD_TEENSY35_36
|
||||
#define KNOWN_BOARD 1
|
||||
@ -21,7 +21,7 @@
|
||||
#define LARGE_FLASH true
|
||||
#define USBCON //1286 // Disable MarlinSerial etc.
|
||||
|
||||
/*
|
||||
/*
|
||||
teemuatlut plan for Teensy3.5 and Teensy3.6:
|
||||
|
||||
USB
|
||||
@ -109,22 +109,22 @@ D8 HEATER_BED_PIN CS1 RX4 A12 31 | 46 * * 47 | 34 A15 PWM
|
||||
#define SOL1_PIN 28
|
||||
|
||||
#ifndef SDSUPPORT
|
||||
// these pins are defined in the SD library if building with SD support
|
||||
// these are defined in the SD library if building with SD support
|
||||
#define SCK_PIN 13
|
||||
#define MISO_PIN 12
|
||||
#define MOSI_PIN 11
|
||||
#endif
|
||||
|
||||
#ifdef ULTRA_LCD
|
||||
#define LCD_PINS_RS 40
|
||||
#define LCD_PINS_ENABLE 41
|
||||
#define LCD_PINS_D4 42
|
||||
#define LCD_PINS_D5 43
|
||||
#define LCD_PINS_D6 44
|
||||
#define LCD_PINS_D7 45
|
||||
#define BTN_EN1 46
|
||||
#define BTN_EN2 47
|
||||
#define BTN_ENC 48
|
||||
#define LCD_PINS_RS 40
|
||||
#define LCD_PINS_ENABLE 41
|
||||
#define LCD_PINS_D4 42
|
||||
#define LCD_PINS_D5 43
|
||||
#define LCD_PINS_D6 44
|
||||
#define LCD_PINS_D7 45
|
||||
#define BTN_EN1 46
|
||||
#define BTN_EN2 47
|
||||
#define BTN_ENC 48
|
||||
#endif
|
||||
|
||||
#endif // MOTHERBOARD == 841 (Teensy3.5 and Teensy3.6)
|
||||
|
@ -1,13 +1,13 @@
|
||||
/* File: startup_ARMCM3.s
|
||||
* Purpose: startup file for Cortex-M3/M4 devices. Should use with
|
||||
* Purpose: startup file for Cortex-M3/M4 devices. Should use with
|
||||
* GNU Tools for ARM Embedded Processors
|
||||
* Version: V1.1
|
||||
* Date: 17 June 2011
|
||||
*
|
||||
*
|
||||
* Copyright (C) 2011 ARM Limited. All rights reserved.
|
||||
* ARM Limited (ARM) is supplying this software for use with Cortex-M3/M4
|
||||
* processor based microcontrollers. This file can be freely distributed
|
||||
* within development tools that are supporting such ARM based processors.
|
||||
* ARM Limited (ARM) is supplying this software for use with Cortex-M3/M4
|
||||
* processor based microcontrollers. This file can be freely distributed
|
||||
* within development tools that are supporting such ARM based processors.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
|
||||
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
|
||||
@ -20,12 +20,12 @@
|
||||
|
||||
/* Memory Model
|
||||
The HEAP starts at the end of the DATA section and grows upward.
|
||||
|
||||
|
||||
The STACK starts at the end of the RAM and grows downward.
|
||||
|
||||
|
||||
The HEAP and stack STACK are only checked at compile time:
|
||||
(DATA_SIZE + HEAP_SIZE + STACK_SIZE) < RAM_SIZE
|
||||
|
||||
|
||||
This is just a check for the bare minimum for the Heap+Stack area before
|
||||
aborting compilation, it is not the run time limit:
|
||||
Heap_Size + Stack_Size = 0x80 + 0x80 = 0x100
|
||||
@ -59,7 +59,7 @@ __HeapBase:
|
||||
.size __HeapBase, . - __HeapBase
|
||||
__HeapLimit:
|
||||
.size __HeapLimit, . - __HeapLimit
|
||||
|
||||
|
||||
.section .isr_vector
|
||||
.align 2
|
||||
.globl __isr_vector
|
||||
@ -128,7 +128,7 @@ __isr_vector:
|
||||
.type Reset_Handler, %function
|
||||
Reset_Handler:
|
||||
/* Loop to copy data from read only memory to RAM. The ranges
|
||||
* of copy from/to are specified by following symbols evaluated in
|
||||
* of copy from/to are specified by following symbols evaluated in
|
||||
* linker script.
|
||||
* _etext: End of code section, i.e., begin of data sections to copy from.
|
||||
* __data_start__/__data_end__: RAM address range that data should be
|
||||
@ -153,7 +153,7 @@ Reset_Handler:
|
||||
bx r0
|
||||
.pool
|
||||
.size Reset_Handler, . - Reset_Handler
|
||||
|
||||
|
||||
/* Macro to define default handlers. Default handler
|
||||
* will be weak symbol and just dead loops. They can be
|
||||
* overwritten by other handlers */
|
||||
@ -166,7 +166,7 @@ Reset_Handler:
|
||||
b .
|
||||
.size \handler_name, . - \handler_name
|
||||
.endm
|
||||
|
||||
|
||||
def_default_handler NMI_Handler
|
||||
def_default_handler HardFault_Handler
|
||||
def_default_handler MemManage_Handler
|
||||
@ -177,7 +177,7 @@ Reset_Handler:
|
||||
def_default_handler PendSV_Handler
|
||||
def_default_handler SysTick_Handler
|
||||
def_default_handler Default_Handler
|
||||
|
||||
|
||||
def_default_handler WDT_IRQHandler
|
||||
def_default_handler TIMER0_IRQHandler
|
||||
def_default_handler TIMER1_IRQHandler
|
||||
|
@ -188,7 +188,7 @@ static uint32_t I2C_SendByte (LPC_I2C_TypeDef *I2Cx, uint8_t databyte)
|
||||
{
|
||||
return CodeStatus;
|
||||
}
|
||||
|
||||
|
||||
/* Make sure start bit is not active */
|
||||
if (I2Cx->I2CONSET & I2C_I2CONSET_STA)
|
||||
{
|
||||
@ -216,7 +216,7 @@ static uint32_t I2C_SendByte (LPC_I2C_TypeDef *I2Cx, uint8_t databyte)
|
||||
static uint32_t I2C_GetByte (LPC_I2C_TypeDef *I2Cx, uint8_t *retdat, Bool ack)
|
||||
{
|
||||
*retdat = (uint8_t) (I2Cx->I2DAT & I2C_I2DAT_BITMASK);
|
||||
|
||||
|
||||
if (ack == TRUE)
|
||||
{
|
||||
I2Cx->I2CONSET = I2C_I2CONSET_AA;
|
||||
@ -227,7 +227,7 @@ static uint32_t I2C_GetByte (LPC_I2C_TypeDef *I2Cx, uint8_t *retdat, Bool ack)
|
||||
}
|
||||
|
||||
I2Cx->I2CONCLR = I2C_I2CONCLR_SIC;
|
||||
|
||||
|
||||
return (I2Cx->I2STAT & I2C_STAT_CODE_BITMASK);
|
||||
}
|
||||
|
||||
@ -454,7 +454,7 @@ int32_t I2C_MasterHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_M
|
||||
uint8_t *rxdat;
|
||||
uint8_t tmp;
|
||||
int32_t Ret = I2C_OK;
|
||||
|
||||
|
||||
//get buffer to send/receive
|
||||
txdat = (uint8_t *) &TransferCfg->tx_data[TransferCfg->tx_count];
|
||||
rxdat = (uint8_t *) &TransferCfg->rx_data[TransferCfg->rx_count];
|
||||
@ -481,11 +481,11 @@ int32_t I2C_MasterHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_M
|
||||
break;
|
||||
case I2C_I2STAT_M_TX_SLAW_ACK:
|
||||
case I2C_I2STAT_M_TX_DAT_ACK:
|
||||
|
||||
|
||||
if(TransferCfg->tx_count < TransferCfg->tx_length)
|
||||
{
|
||||
I2C_SendByte(I2Cx, *txdat);
|
||||
|
||||
|
||||
txdat++;
|
||||
|
||||
TransferCfg->tx_count++;
|
||||
@ -497,7 +497,7 @@ int32_t I2C_MasterHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_M
|
||||
I2C_Stop(I2Cx);
|
||||
|
||||
Ret = I2C_SEND_END;
|
||||
|
||||
|
||||
}
|
||||
break;
|
||||
case I2C_I2STAT_M_TX_DAT_NACK:
|
||||
@ -537,7 +537,7 @@ int32_t I2C_MasterHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_M
|
||||
{
|
||||
Ret = I2C_RECV_END;
|
||||
}
|
||||
|
||||
|
||||
break;
|
||||
case I2C_I2STAT_M_RX_DAT_NACK:
|
||||
I2C_GetByte(I2Cx, &tmp, FALSE);
|
||||
@ -559,7 +559,7 @@ int32_t I2C_MasterHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_M
|
||||
I2Cx->I2CONCLR = I2C_I2CONCLR_SIC;
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
return Ret;
|
||||
}
|
||||
|
||||
@ -592,7 +592,7 @@ int32_t I2C_SlaveHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_S_
|
||||
//get buffer to send/receive
|
||||
txdat = (uint8_t *) &TransferCfg->tx_data[TransferCfg->tx_count];
|
||||
rxdat = (uint8_t *) &TransferCfg->rx_data[TransferCfg->rx_count];
|
||||
|
||||
|
||||
switch (CodeStatus)
|
||||
{
|
||||
/* Reading phase -------------------------------------------------------- */
|
||||
@ -636,7 +636,7 @@ int32_t I2C_SlaveHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_S_
|
||||
I2Cx->I2CONSET = I2C_I2CONSET_AA;
|
||||
I2Cx->I2CONCLR = I2C_I2CONCLR_SIC;
|
||||
}
|
||||
|
||||
|
||||
break;
|
||||
/* DATA has been received, Only the first data byte will be received with ACK. Additional
|
||||
data will be received with NOT ACK. */
|
||||
@ -688,7 +688,7 @@ int32_t I2C_SlaveHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_S_
|
||||
I2Cx->I2CONSET = I2C_I2CONSET_AA|I2C_I2CONSET_STA;
|
||||
I2Cx->I2CONCLR = I2C_I2CONCLR_SIC;
|
||||
break;
|
||||
|
||||
|
||||
case I2C_I2STAT_S_TX_LAST_DAT_ACK:
|
||||
/* Data has been transmitted, NACK has been received,
|
||||
* that means there's no more data to send, exit now */
|
||||
@ -729,7 +729,7 @@ int32_t I2C_SlaveHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_S_
|
||||
I2Cx->I2CONCLR = I2C_I2CONCLR_SIC;
|
||||
Ret = I2C_STA_STO_RECV;
|
||||
break;
|
||||
|
||||
|
||||
/* No status information */
|
||||
case I2C_I2STAT_NO_INF:
|
||||
/* Other status must be captured */
|
||||
@ -737,7 +737,7 @@ int32_t I2C_SlaveHanleStates(LPC_I2C_TypeDef *I2Cx, uint32_t CodeStatus, I2C_S_
|
||||
I2Cx->I2CONSET = I2C_I2CONSET_AA;
|
||||
I2Cx->I2CONCLR = I2C_I2CONCLR_SIC;
|
||||
break;
|
||||
|
||||
|
||||
}
|
||||
|
||||
return Ret;
|
||||
@ -787,7 +787,7 @@ void I2C_MasterHandler(LPC_I2C_TypeDef *I2Cx)
|
||||
else if (Ret & I2C_SEND_END)
|
||||
{
|
||||
// If no need to wait for data from Slave
|
||||
if(txrx_setup->rx_count >= (txrx_setup->rx_length))
|
||||
if(txrx_setup->rx_count >= (txrx_setup->rx_length))
|
||||
{
|
||||
goto s_int_end;
|
||||
}
|
||||
@ -799,7 +799,7 @@ void I2C_MasterHandler(LPC_I2C_TypeDef *I2Cx)
|
||||
return;
|
||||
}
|
||||
}
|
||||
else if (Ret & I2C_RECV_END)
|
||||
else if (Ret & I2C_RECV_END)
|
||||
{
|
||||
goto s_int_end;
|
||||
}
|
||||
@ -815,7 +815,7 @@ s_int_end:
|
||||
I2Cx->I2CONCLR = I2C_I2CONCLR_AAC | I2C_I2CONCLR_SIC | I2C_I2CONCLR_STAC;
|
||||
|
||||
I2C_MasterComplete[i2cId] = TRUE;
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
@ -874,7 +874,7 @@ handle_state:
|
||||
goto s_int_end;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if(Ret &I2C_SEND_END)
|
||||
{
|
||||
@ -937,7 +937,7 @@ retry:
|
||||
|
||||
// Start command
|
||||
CodeStatus = I2C_Start(I2Cx);
|
||||
|
||||
|
||||
while(1) // send data first and then receive data from Slave.
|
||||
{
|
||||
Ret = I2C_MasterHanleStates(I2Cx, CodeStatus, TransferCfg);
|
||||
@ -955,13 +955,13 @@ retry:
|
||||
else if( (Ret & I2C_BYTE_SENT) ||
|
||||
(Ret & I2C_BYTE_RECV))
|
||||
{
|
||||
// Wait for sending ends
|
||||
// Wait for sending ends
|
||||
while (!(I2Cx->I2CONSET & I2C_I2CONSET_SI));
|
||||
}
|
||||
else if (Ret & I2C_SEND_END) // already send all data
|
||||
{
|
||||
// If no need to wait for data from Slave
|
||||
if(TransferCfg->rx_count >= (TransferCfg->rx_length))
|
||||
if(TransferCfg->rx_count >= (TransferCfg->rx_length))
|
||||
{
|
||||
break;
|
||||
}
|
||||
@ -1037,7 +1037,7 @@ Status I2C_SlaveTransferData(LPC_I2C_TypeDef *I2Cx, I2C_S_SETUP_Type *TransferCf
|
||||
I2C_TRANSFER_OPT_Type Opt)
|
||||
{
|
||||
int32_t Ret = I2C_OK;
|
||||
|
||||
|
||||
uint32_t CodeStatus;
|
||||
uint32_t timeout;
|
||||
int32_t time_en;
|
||||
@ -1052,7 +1052,7 @@ Status I2C_SlaveTransferData(LPC_I2C_TypeDef *I2Cx, I2C_S_SETUP_Type *TransferCf
|
||||
{
|
||||
/* Set AA bit to ACK command on I2C bus */
|
||||
I2Cx->I2CONSET = I2C_I2CONSET_AA;
|
||||
|
||||
|
||||
/* Clear SI bit to be ready ... */
|
||||
I2Cx->I2CONCLR = (I2C_I2CONCLR_SIC | I2C_I2CONCLR_STAC|I2C_I2CONCLR_STOC);
|
||||
|
||||
|
@ -331,7 +331,7 @@ Status I2S_FreqConfig(LPC_I2S_TypeDef *I2Sx, uint32_t Freq, uint8_t TRMode) {
|
||||
uint16_t dif;
|
||||
uint16_t x_divide, y_divide;
|
||||
uint16_t err, ErrorOptimal = 0xFFFF;
|
||||
|
||||
|
||||
uint32_t N;
|
||||
|
||||
CHECK_PARAM(PARAM_I2Sx(I2Sx));
|
||||
@ -360,7 +360,7 @@ Status I2S_FreqConfig(LPC_I2S_TypeDef *I2Sx, uint32_t Freq, uint8_t TRMode) {
|
||||
* The formula is:
|
||||
* I2S_MCLK = PCLK_I2S * (X/Y) / 2
|
||||
* In that, Y must be greater than or equal to X. X should divides evenly
|
||||
* into Y.
|
||||
* into Y.
|
||||
* We have:
|
||||
* I2S_MCLK = Freq * channel*wordwidth * (I2STXBITRATE+1);
|
||||
* So: (X/Y) = (Freq * channel*wordwidth * (I2STXBITRATE+1))*2/PCLK_I2S
|
||||
|
@ -1,35 +1,35 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 11. November 2010
|
||||
* $Revision: V1.0.2
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_common_tables.h
|
||||
*
|
||||
* Description: This file has extern declaration for common tables like Bitreverse, reciprocal etc which are used across different functions
|
||||
*
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 11. November 2010
|
||||
* $Revision: V1.0.2
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_common_tables.h
|
||||
*
|
||||
* Description: This file has extern declaration for common tables like Bitreverse, reciprocal etc which are used across different functions
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3
|
||||
*
|
||||
* Version 1.0.2 2010/11/11
|
||||
* Documentation updated.
|
||||
*
|
||||
* Version 1.0.1 2010/10/05
|
||||
* Production release and review comments incorporated.
|
||||
*
|
||||
* Version 1.0.0 2010/09/20
|
||||
* Production release and review comments incorporated.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#ifndef _ARM_COMMON_TABLES_H
|
||||
#define _ARM_COMMON_TABLES_H
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
extern uint16_t armBitRevTable[256];
|
||||
extern q15_t armRecipTableQ15[64];
|
||||
extern q31_t armRecipTableQ31[64];
|
||||
*
|
||||
* Version 1.0.2 2010/11/11
|
||||
* Documentation updated.
|
||||
*
|
||||
* Version 1.0.1 2010/10/05
|
||||
* Production release and review comments incorporated.
|
||||
*
|
||||
* Version 1.0.0 2010/09/20
|
||||
* Production release and review comments incorporated.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#ifndef _ARM_COMMON_TABLES_H
|
||||
#define _ARM_COMMON_TABLES_H
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
extern uint16_t armBitRevTable[256];
|
||||
extern q15_t armRecipTableQ15[64];
|
||||
extern q31_t armRecipTableQ31[64];
|
||||
extern const q31_t realCoefAQ31[1024];
|
||||
extern const q31_t realCoefBQ31[1024];
|
||||
|
||||
#endif /* ARM_COMMON_TABLES_H */
|
||||
|
||||
#endif /* ARM_COMMON_TABLES_H */
|
||||
|
@ -8,9 +8,9 @@
|
||||
* Copyright (C) 2009-2011 ARM Limited. All rights reserved.
|
||||
*
|
||||
* @par
|
||||
* ARM Limited (ARM) is supplying this software for use with Cortex-M
|
||||
* processor based microcontrollers. This file can be freely distributed
|
||||
* within development tools that are supporting such ARM based processors.
|
||||
* ARM Limited (ARM) is supplying this software for use with Cortex-M
|
||||
* processor based microcontrollers. This file can be freely distributed
|
||||
* within development tools that are supporting such ARM based processors.
|
||||
*
|
||||
* @par
|
||||
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
|
||||
@ -26,7 +26,7 @@
|
||||
|
||||
|
||||
/* ########################### Core Function Access ########################### */
|
||||
/** \ingroup CMSIS_Core_FunctionInterface
|
||||
/** \ingroup CMSIS_Core_FunctionInterface
|
||||
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
|
||||
@{
|
||||
*/
|
||||
@ -182,7 +182,7 @@ static __INLINE void __set_PRIMASK(uint32_t priMask)
|
||||
register uint32_t __regPriMask __ASM("primask");
|
||||
__regPriMask = (priMask);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if (__CORTEX_M >= 0x03)
|
||||
|
||||
@ -226,7 +226,7 @@ static __INLINE void __set_BASEPRI(uint32_t basePri)
|
||||
register uint32_t __regBasePri __ASM("basepri");
|
||||
__regBasePri = (basePri & 0xff);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** \brief Get Fault Mask
|
||||
|
||||
@ -407,7 +407,7 @@ __attribute__( ( always_inline ) ) static __INLINE uint32_t __get_PSP(void)
|
||||
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** \brief Set Process Stack Pointer
|
||||
|
||||
@ -434,7 +434,7 @@ __attribute__( ( always_inline ) ) static __INLINE uint32_t __get_MSP(void)
|
||||
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** \brief Set Main Stack Pointer
|
||||
|
||||
@ -473,7 +473,7 @@ __attribute__( ( always_inline ) ) static __INLINE void __set_PRIMASK(uint32_t p
|
||||
{
|
||||
__ASM volatile ("MSR primask, %0" : : "r" (priMask) );
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if (__CORTEX_M >= 0x03)
|
||||
|
||||
@ -508,7 +508,7 @@ __attribute__( ( always_inline ) ) static __INLINE void __disable_fault_irq(void
|
||||
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_BASEPRI(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
|
||||
__ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
@ -535,7 +535,7 @@ __attribute__( ( always_inline ) ) static __INLINE void __set_BASEPRI(uint32_t v
|
||||
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_FAULTMASK(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
|
||||
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
@ -7,7 +7,7 @@
|
||||
* @version 1.0
|
||||
* @date 18. April. 2012
|
||||
* @author NXP MCU SW Application Team
|
||||
*
|
||||
*
|
||||
* Copyright(C) 2011, NXP Semiconductor
|
||||
* All rights reserved.
|
||||
*
|
||||
@ -112,7 +112,7 @@ typedef struct {
|
||||
/**
|
||||
* @}
|
||||
*/
|
||||
|
||||
|
||||
/* Public Functions ----------------------------------------------------------- */
|
||||
/** @defgroup IAP_Public_Functions IAP Public Functions
|
||||
* @{
|
||||
@ -128,7 +128,7 @@ IAP_STATUS_CODE CopyRAM2Flash(uint8_t * dest, uint8_t* source, IAP_WRITE_SIZE si
|
||||
IAP_STATUS_CODE EraseSector(uint32_t start_sec, uint32_t end_sec);
|
||||
/** Blank check sectors */
|
||||
IAP_STATUS_CODE BlankCheckSector(uint32_t start_sec, uint32_t end_sec,
|
||||
uint32_t *first_nblank_loc,
|
||||
uint32_t *first_nblank_loc,
|
||||
uint32_t *first_nblank_val);
|
||||
/** Read part identification number */
|
||||
IAP_STATUS_CODE ReadPartID(uint32_t *partID);
|
||||
|
@ -1,16 +1,16 @@
|
||||
/******************************************************************************
|
||||
* @file: system_LPC17xx.h
|
||||
* @purpose: CMSIS Cortex-M3 Device Peripheral Access Layer Header File
|
||||
* for the NXP LPC17xx Device Series
|
||||
* for the NXP LPC17xx Device Series
|
||||
* @version: V1.02
|
||||
* @date: 27. July 2009
|
||||
*----------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2009 ARM Limited. All rights reserved.
|
||||
*
|
||||
* ARM Limited (ARM) is supplying this software for use with Cortex-M3
|
||||
* processor based microcontrollers. This file can be freely distributed
|
||||
* within development tools that are supporting such ARM based processors.
|
||||
* ARM Limited (ARM) is supplying this software for use with Cortex-M3
|
||||
* processor based microcontrollers. This file can be freely distributed
|
||||
* within development tools that are supporting such ARM based processors.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
|
||||
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
|
||||
@ -26,7 +26,7 @@
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */
|
||||
|
||||
@ -48,7 +48,7 @@ extern void SystemInit (void);
|
||||
* @param none
|
||||
* @return none
|
||||
*
|
||||
* @brief Updates the SystemCoreClock with current core Clock
|
||||
* @brief Updates the SystemCoreClock with current core Clock
|
||||
* retrieved from cpu registers.
|
||||
*/
|
||||
extern void SystemCoreClockUpdate (void);
|
||||
|
@ -1,9 +1,9 @@
|
||||
{
|
||||
"name": "CMSIS-LPC1768",
|
||||
"name": "CMSIS-LPC1768",
|
||||
"version": "0.0.0",
|
||||
"frameworks": [],
|
||||
"frameworks": [],
|
||||
"platforms": [
|
||||
"nxplpc",
|
||||
"nxplpc",
|
||||
"ststm32"
|
||||
],
|
||||
"description": "CMSIS library for LPC1768",
|
||||
|
Loading…
x
Reference in New Issue
Block a user