Squash UBL postscript comment

This commit is contained in:
Scott Lahteine 2018-03-18 18:56:09 -05:00
parent 93af8aa157
commit c0d694d5d3

View File

@ -281,26 +281,22 @@
* You MUST do M502, M500 to initialize the storage. Failure to do this will cause all * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
* kinds of problems. Enabling EEPROM Storage is required. * kinds of problems. Enabling EEPROM Storage is required.
* *
* When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice * When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that
* the Unified Bed Leveling probes points further and further away from the starting location. (The * UBL probes points increasingly further from the starting location. (The starting location defaults
* starting location defaults to the center of the bed.) The original Grid and Mesh leveling used * to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is
* a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This * especially better for Delta printers, since it populates the center of the mesh first, allowing for
* allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to * a quicker test print to verify settings. You don't need to populate the entire mesh to use it.
* perform a small print and check out your settings quicker. You do not need to populate the * After all, you don't want to spend a lot of time generating a mesh only to realize the resolution
* entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize * or zprobe_zoffset are incorrect. Mesh-generation gathers points starting closest to the nozzle unless
* you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation * an (X,Y) coordinate pair is given.
* gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
* *
* The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort * Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get
* to get this Mesh data correct for a user's printer. We do not want this data destroyed as * the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure
* new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of * evolves, UBL stores all mesh data at the end of EEPROM.
* the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
* other data stored in the EEPROM. (For sure the developers are going to complain about this, but
* this is going to be helpful to the users!)
* *
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big * UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions * 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and
* we now have the functionality and features of all three systems combined. * features of all three systems combined.
*/ */
void unified_bed_leveling::G29() { void unified_bed_leveling::G29() {