Merge pull request #3631 from thinkyhead/rc_singletons
Encapsulate Stepper, Planner, Endstops in singleton classes
This commit is contained in:
commit
c2145566c7
@ -216,7 +216,7 @@ void manage_inactivity(bool ignore_stepper_queue = false);
|
||||
*/
|
||||
enum AxisEnum {X_AXIS = 0, A_AXIS = 0, Y_AXIS = 1, B_AXIS = 1, Z_AXIS = 2, C_AXIS = 2, E_AXIS = 3, X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 5};
|
||||
|
||||
enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8};
|
||||
#define _AXIS(AXIS) AXIS ##_AXIS
|
||||
|
||||
void enable_all_steppers();
|
||||
void disable_all_steppers();
|
||||
@ -283,6 +283,12 @@ extern float sw_endstop_max[3]; // axis[n].sw_endstop_max
|
||||
extern bool axis_known_position[3]; // axis[n].is_known
|
||||
extern bool axis_homed[3]; // axis[n].is_homed
|
||||
|
||||
// GCode support for external objects
|
||||
extern bool code_seen(char);
|
||||
extern float code_value();
|
||||
extern long code_value_long();
|
||||
extern int16_t code_value_short();
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
#ifndef DELTA_RADIUS_TRIM_TOWER_1
|
||||
#define DELTA_RADIUS_TRIM_TOWER_1 0.0
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -596,7 +596,7 @@ void CardReader::updir() {
|
||||
}
|
||||
|
||||
void CardReader::printingHasFinished() {
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
|
||||
file.close();
|
||||
file_subcall_ctr--;
|
||||
|
@ -43,18 +43,18 @@
|
||||
*
|
||||
* 100 Version (char x4)
|
||||
*
|
||||
* 104 M92 XYZE axis_steps_per_unit (float x4)
|
||||
* 120 M203 XYZE max_feedrate (float x4)
|
||||
* 136 M201 XYZE max_acceleration_units_per_sq_second (uint32_t x4)
|
||||
* 152 M204 P acceleration (float)
|
||||
* 156 M204 R retract_acceleration (float)
|
||||
* 160 M204 T travel_acceleration (float)
|
||||
* 164 M205 S minimumfeedrate (float)
|
||||
* 168 M205 T mintravelfeedrate (float)
|
||||
* 172 M205 B minsegmenttime (ulong)
|
||||
* 176 M205 X max_xy_jerk (float)
|
||||
* 180 M205 Z max_z_jerk (float)
|
||||
* 184 M205 E max_e_jerk (float)
|
||||
* 104 M92 XYZE planner.axis_steps_per_unit (float x4)
|
||||
* 120 M203 XYZE planner.max_feedrate (float x4)
|
||||
* 136 M201 XYZE planner.max_acceleration_units_per_sq_second (uint32_t x4)
|
||||
* 152 M204 P planner.acceleration (float)
|
||||
* 156 M204 R planner.retract_acceleration (float)
|
||||
* 160 M204 T planner.travel_acceleration (float)
|
||||
* 164 M205 S planner.min_feedrate (float)
|
||||
* 168 M205 T planner.min_travel_feedrate (float)
|
||||
* 172 M205 B planner.min_segment_time (ulong)
|
||||
* 176 M205 X planner.max_xy_jerk (float)
|
||||
* 180 M205 Z planner.max_z_jerk (float)
|
||||
* 184 M205 E planner.max_e_jerk (float)
|
||||
* 188 M206 XYZ home_offset (float x3)
|
||||
*
|
||||
* Mesh bed leveling:
|
||||
@ -173,18 +173,18 @@ void Config_StoreSettings() {
|
||||
char ver[4] = "000";
|
||||
int i = EEPROM_OFFSET;
|
||||
EEPROM_WRITE_VAR(i, ver); // invalidate data first
|
||||
EEPROM_WRITE_VAR(i, axis_steps_per_unit);
|
||||
EEPROM_WRITE_VAR(i, max_feedrate);
|
||||
EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
|
||||
EEPROM_WRITE_VAR(i, acceleration);
|
||||
EEPROM_WRITE_VAR(i, retract_acceleration);
|
||||
EEPROM_WRITE_VAR(i, travel_acceleration);
|
||||
EEPROM_WRITE_VAR(i, minimumfeedrate);
|
||||
EEPROM_WRITE_VAR(i, mintravelfeedrate);
|
||||
EEPROM_WRITE_VAR(i, minsegmenttime);
|
||||
EEPROM_WRITE_VAR(i, max_xy_jerk);
|
||||
EEPROM_WRITE_VAR(i, max_z_jerk);
|
||||
EEPROM_WRITE_VAR(i, max_e_jerk);
|
||||
EEPROM_WRITE_VAR(i, planner.axis_steps_per_unit);
|
||||
EEPROM_WRITE_VAR(i, planner.max_feedrate);
|
||||
EEPROM_WRITE_VAR(i, planner.max_acceleration_units_per_sq_second);
|
||||
EEPROM_WRITE_VAR(i, planner.acceleration);
|
||||
EEPROM_WRITE_VAR(i, planner.retract_acceleration);
|
||||
EEPROM_WRITE_VAR(i, planner.travel_acceleration);
|
||||
EEPROM_WRITE_VAR(i, planner.min_feedrate);
|
||||
EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
|
||||
EEPROM_WRITE_VAR(i, planner.min_segment_time);
|
||||
EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
|
||||
EEPROM_WRITE_VAR(i, planner.max_z_jerk);
|
||||
EEPROM_WRITE_VAR(i, planner.max_e_jerk);
|
||||
EEPROM_WRITE_VAR(i, home_offset);
|
||||
|
||||
uint8_t mesh_num_x = 3;
|
||||
@ -351,22 +351,22 @@ void Config_RetrieveSettings() {
|
||||
float dummy = 0;
|
||||
|
||||
// version number match
|
||||
EEPROM_READ_VAR(i, axis_steps_per_unit);
|
||||
EEPROM_READ_VAR(i, max_feedrate);
|
||||
EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);
|
||||
EEPROM_READ_VAR(i, planner.axis_steps_per_unit);
|
||||
EEPROM_READ_VAR(i, planner.max_feedrate);
|
||||
EEPROM_READ_VAR(i, planner.max_acceleration_units_per_sq_second);
|
||||
|
||||
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
||||
reset_acceleration_rates();
|
||||
planner.reset_acceleration_rates();
|
||||
|
||||
EEPROM_READ_VAR(i, acceleration);
|
||||
EEPROM_READ_VAR(i, retract_acceleration);
|
||||
EEPROM_READ_VAR(i, travel_acceleration);
|
||||
EEPROM_READ_VAR(i, minimumfeedrate);
|
||||
EEPROM_READ_VAR(i, mintravelfeedrate);
|
||||
EEPROM_READ_VAR(i, minsegmenttime);
|
||||
EEPROM_READ_VAR(i, max_xy_jerk);
|
||||
EEPROM_READ_VAR(i, max_z_jerk);
|
||||
EEPROM_READ_VAR(i, max_e_jerk);
|
||||
EEPROM_READ_VAR(i, planner.acceleration);
|
||||
EEPROM_READ_VAR(i, planner.retract_acceleration);
|
||||
EEPROM_READ_VAR(i, planner.travel_acceleration);
|
||||
EEPROM_READ_VAR(i, planner.min_feedrate);
|
||||
EEPROM_READ_VAR(i, planner.min_travel_feedrate);
|
||||
EEPROM_READ_VAR(i, planner.min_segment_time);
|
||||
EEPROM_READ_VAR(i, planner.max_xy_jerk);
|
||||
EEPROM_READ_VAR(i, planner.max_z_jerk);
|
||||
EEPROM_READ_VAR(i, planner.max_e_jerk);
|
||||
EEPROM_READ_VAR(i, home_offset);
|
||||
|
||||
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
|
||||
@ -528,9 +528,9 @@ void Config_ResetDefault() {
|
||||
float tmp2[] = DEFAULT_MAX_FEEDRATE;
|
||||
long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
||||
for (uint8_t i = 0; i < NUM_AXIS; i++) {
|
||||
axis_steps_per_unit[i] = tmp1[i];
|
||||
max_feedrate[i] = tmp2[i];
|
||||
max_acceleration_units_per_sq_second[i] = tmp3[i];
|
||||
planner.axis_steps_per_unit[i] = tmp1[i];
|
||||
planner.max_feedrate[i] = tmp2[i];
|
||||
planner.max_acceleration_units_per_sq_second[i] = tmp3[i];
|
||||
#if ENABLED(SCARA)
|
||||
if (i < COUNT(axis_scaling))
|
||||
axis_scaling[i] = 1;
|
||||
@ -538,17 +538,17 @@ void Config_ResetDefault() {
|
||||
}
|
||||
|
||||
// steps per sq second need to be updated to agree with the units per sq second
|
||||
reset_acceleration_rates();
|
||||
planner.reset_acceleration_rates();
|
||||
|
||||
acceleration = DEFAULT_ACCELERATION;
|
||||
retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
|
||||
travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
|
||||
minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
|
||||
minsegmenttime = DEFAULT_MINSEGMENTTIME;
|
||||
mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
|
||||
max_xy_jerk = DEFAULT_XYJERK;
|
||||
max_z_jerk = DEFAULT_ZJERK;
|
||||
max_e_jerk = DEFAULT_EJERK;
|
||||
planner.acceleration = DEFAULT_ACCELERATION;
|
||||
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
|
||||
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
|
||||
planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE;
|
||||
planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
|
||||
planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE;
|
||||
planner.max_xy_jerk = DEFAULT_XYJERK;
|
||||
planner.max_z_jerk = DEFAULT_ZJERK;
|
||||
planner.max_e_jerk = DEFAULT_EJERK;
|
||||
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
@ -653,10 +653,10 @@ void Config_PrintSettings(bool forReplay) {
|
||||
SERIAL_ECHOLNPGM("Steps per unit:");
|
||||
CONFIG_ECHO_START;
|
||||
}
|
||||
SERIAL_ECHOPAIR(" M92 X", axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
|
||||
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_unit[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_unit[E_AXIS]);
|
||||
SERIAL_EOL;
|
||||
|
||||
CONFIG_ECHO_START;
|
||||
@ -677,10 +677,10 @@ void Config_PrintSettings(bool forReplay) {
|
||||
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
|
||||
CONFIG_ECHO_START;
|
||||
}
|
||||
SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
|
||||
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]);
|
||||
SERIAL_EOL;
|
||||
|
||||
CONFIG_ECHO_START;
|
||||
@ -688,19 +688,19 @@ void Config_PrintSettings(bool forReplay) {
|
||||
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
|
||||
CONFIG_ECHO_START;
|
||||
}
|
||||
SERIAL_ECHOPAIR(" M201 X", max_acceleration_units_per_sq_second[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
|
||||
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_units_per_sq_second[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_units_per_sq_second[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_units_per_sq_second[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", planner.max_acceleration_units_per_sq_second[E_AXIS]);
|
||||
SERIAL_EOL;
|
||||
CONFIG_ECHO_START;
|
||||
if (!forReplay) {
|
||||
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
|
||||
CONFIG_ECHO_START;
|
||||
}
|
||||
SERIAL_ECHOPAIR(" M204 P", acceleration);
|
||||
SERIAL_ECHOPAIR(" R", retract_acceleration);
|
||||
SERIAL_ECHOPAIR(" T", travel_acceleration);
|
||||
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
|
||||
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
|
||||
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
|
||||
SERIAL_EOL;
|
||||
|
||||
CONFIG_ECHO_START;
|
||||
@ -708,12 +708,12 @@ void Config_PrintSettings(bool forReplay) {
|
||||
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
|
||||
CONFIG_ECHO_START;
|
||||
}
|
||||
SERIAL_ECHOPAIR(" M205 S", minimumfeedrate);
|
||||
SERIAL_ECHOPAIR(" T", mintravelfeedrate);
|
||||
SERIAL_ECHOPAIR(" B", minsegmenttime);
|
||||
SERIAL_ECHOPAIR(" X", max_xy_jerk);
|
||||
SERIAL_ECHOPAIR(" Z", max_z_jerk);
|
||||
SERIAL_ECHOPAIR(" E", max_e_jerk);
|
||||
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate);
|
||||
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate);
|
||||
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
|
||||
SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
|
||||
SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
|
||||
SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
|
||||
SERIAL_EOL;
|
||||
|
||||
CONFIG_ECHO_START;
|
||||
|
356
Marlin/endstops.cpp
Normal file
356
Marlin/endstops.cpp
Normal file
@ -0,0 +1,356 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* endstops.cpp - A singleton object to manage endstops
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "endstops.h"
|
||||
#include "stepper.h"
|
||||
#include "ultralcd.h"
|
||||
|
||||
// TEST_ENDSTOP: test the old and the current status of an endstop
|
||||
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
|
||||
|
||||
Endstops endstops;
|
||||
|
||||
Endstops::Endstops() {
|
||||
enable_globally(ENABLED(ENDSTOPS_ONLY_FOR_HOMING));
|
||||
enable(true);
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
enable_z_probe(false);
|
||||
#endif
|
||||
} // Endstops::Endstops
|
||||
|
||||
void Endstops::init() {
|
||||
|
||||
#if HAS_X_MIN
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_XMIN)
|
||||
WRITE(X_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Y_MIN
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_YMIN)
|
||||
WRITE(Y_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_MIN
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
||||
WRITE(Z_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z2_MIN
|
||||
SET_INPUT(Z2_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
||||
WRITE(Z2_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_X_MAX
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_XMAX)
|
||||
WRITE(X_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Y_MAX
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_YMAX)
|
||||
WRITE(Y_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_MAX
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
||||
WRITE(Z_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z2_MAX
|
||||
SET_INPUT(Z2_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
||||
WRITE(Z2_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
|
||||
SET_INPUT(Z_MIN_PROBE_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
|
||||
WRITE(Z_MIN_PROBE_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
} // Endstops::init
|
||||
|
||||
void Endstops::report_state() {
|
||||
if (endstop_hit_bits) {
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
|
||||
#define _SET_STOP_CHAR(A,C) (chr## A = C)
|
||||
#else
|
||||
#define _SET_STOP_CHAR(A,C) ;
|
||||
#endif
|
||||
|
||||
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
|
||||
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \
|
||||
_SET_STOP_CHAR(A,C); }while(0)
|
||||
|
||||
#define _ENDSTOP_HIT_TEST(A,C) \
|
||||
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
|
||||
_ENDSTOP_HIT_ECHO(A,C)
|
||||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
|
||||
_ENDSTOP_HIT_TEST(X, 'X');
|
||||
_ENDSTOP_HIT_TEST(Y, 'Y');
|
||||
_ENDSTOP_HIT_TEST(Z, 'Z');
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
||||
#define P_AXIS Z_AXIS
|
||||
if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
|
||||
#endif
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
|
||||
sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
|
||||
lcd_setstatus(msg);
|
||||
#endif
|
||||
|
||||
hit_on_purpose();
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
|
||||
if (abort_on_endstop_hit) {
|
||||
card.sdprinting = false;
|
||||
card.closefile();
|
||||
stepper.quick_stop();
|
||||
disable_all_heaters(); // switch off all heaters.
|
||||
}
|
||||
#endif
|
||||
}
|
||||
} // Endstops::report_state
|
||||
|
||||
void Endstops::M119() {
|
||||
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
|
||||
#if HAS_X_MIN
|
||||
SERIAL_PROTOCOLPGM(MSG_X_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if HAS_X_MAX
|
||||
SERIAL_PROTOCOLPGM(MSG_X_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if HAS_Y_MIN
|
||||
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if HAS_Y_MAX
|
||||
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if HAS_Z_MIN
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if HAS_Z_MAX
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if HAS_Z2_MAX
|
||||
SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if HAS_Z_PROBE
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
} // Endstops::M119
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
|
||||
// Pass the result of the endstop test
|
||||
void Endstops::test_dual_z_endstops(EndstopEnum es1, EndstopEnum es2) {
|
||||
byte z_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Z, bit 1 for Z2
|
||||
if (stepper.current_block->steps[Z_AXIS] > 0) {
|
||||
stepper.endstop_triggered(Z_AXIS);
|
||||
SBI(endstop_hit_bits, Z_MIN);
|
||||
if (!stepper.performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
stepper.kill_current_block();
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// Check endstops - Called from ISR!
|
||||
void Endstops::update() {
|
||||
|
||||
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
|
||||
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
|
||||
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
|
||||
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
||||
|
||||
// UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
|
||||
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
|
||||
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
|
||||
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
|
||||
|
||||
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
|
||||
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
|
||||
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
|
||||
_ENDSTOP_HIT(AXIS); \
|
||||
stepper.endstop_triggered(_AXIS(AXIS)); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
// Head direction in -X axis for CoreXY and CoreXZ bots.
|
||||
// If Delta1 == -Delta2, the movement is only in Y or Z axis
|
||||
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(A_AXIS) == stepper.motor_direction(CORE_AXIS_2))) {
|
||||
if (stepper.motor_direction(X_HEAD))
|
||||
#else
|
||||
if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot)
|
||||
#endif
|
||||
{ // -direction
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == -1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||
#endif
|
||||
{
|
||||
#if HAS_X_MIN
|
||||
UPDATE_ENDSTOP(X, MIN);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == 1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||
#endif
|
||||
{
|
||||
#if HAS_X_MAX
|
||||
UPDATE_ENDSTOP(X, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(COREXY)
|
||||
// Head direction in -Y axis for CoreXY bots.
|
||||
// If DeltaX == DeltaY, the movement is only in X axis
|
||||
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[B_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(B_AXIS))) {
|
||||
if (stepper.motor_direction(Y_HEAD))
|
||||
#else
|
||||
if (stepper.motor_direction(Y_AXIS)) // -direction
|
||||
#endif
|
||||
{ // -direction
|
||||
#if HAS_Y_MIN
|
||||
UPDATE_ENDSTOP(Y, MIN);
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
#if HAS_Y_MAX
|
||||
UPDATE_ENDSTOP(Y, MAX);
|
||||
#endif
|
||||
}
|
||||
#if ENABLED(COREXY)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(COREXZ)
|
||||
// Head direction in -Z axis for CoreXZ bots.
|
||||
// If DeltaX == DeltaZ, the movement is only in X axis
|
||||
if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[C_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(C_AXIS))) {
|
||||
if (stepper.motor_direction(Z_HEAD))
|
||||
#else
|
||||
if (stepper.motor_direction(Z_AXIS))
|
||||
#endif
|
||||
{ // z -direction
|
||||
#if HAS_Z_MIN
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
|
||||
UPDATE_ENDSTOP_BIT(Z, MIN);
|
||||
#if HAS_Z2_MIN
|
||||
UPDATE_ENDSTOP_BIT(Z2, MIN);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
||||
#endif
|
||||
|
||||
test_dual_z_endstops(Z_MIN, Z2_MIN);
|
||||
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN);
|
||||
#else
|
||||
UPDATE_ENDSTOP(Z, MIN);
|
||||
#endif
|
||||
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
|
||||
#endif // HAS_Z_MIN
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (z_probe_enabled) {
|
||||
UPDATE_ENDSTOP(Z, MIN_PROBE);
|
||||
if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else { // z +direction
|
||||
#if HAS_Z_MAX
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
|
||||
UPDATE_ENDSTOP_BIT(Z, MAX);
|
||||
#if HAS_Z2_MAX
|
||||
UPDATE_ENDSTOP_BIT(Z2, MAX);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
|
||||
#endif
|
||||
|
||||
test_dual_z_endstops(Z_MAX, Z2_MAX);
|
||||
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
UPDATE_ENDSTOP(Z, MAX);
|
||||
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif // Z_MAX_PIN
|
||||
}
|
||||
#if ENABLED(COREXZ)
|
||||
}
|
||||
#endif
|
||||
|
||||
old_endstop_bits = current_endstop_bits;
|
||||
|
||||
} // Endstops::update()
|
105
Marlin/endstops.h
Normal file
105
Marlin/endstops.h
Normal file
@ -0,0 +1,105 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* endstops.h - manages endstops
|
||||
*/
|
||||
|
||||
#ifndef ENDSTOPS_H
|
||||
#define ENDSTOPS_H
|
||||
|
||||
enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8};
|
||||
|
||||
class Endstops {
|
||||
|
||||
public:
|
||||
|
||||
volatile char endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
uint16_t current_endstop_bits = 0,
|
||||
old_endstop_bits = 0;
|
||||
#else
|
||||
byte current_endstop_bits = 0,
|
||||
old_endstop_bits = 0;
|
||||
#endif
|
||||
|
||||
|
||||
bool enabled = true;
|
||||
bool enabled_globally =
|
||||
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
|
||||
false
|
||||
#else
|
||||
true
|
||||
#endif
|
||||
;
|
||||
|
||||
Endstops();
|
||||
|
||||
/**
|
||||
* Initialize the endstop pins
|
||||
*/
|
||||
void init();
|
||||
|
||||
/**
|
||||
* Update the endstops bits from the pins
|
||||
*/
|
||||
void update();
|
||||
|
||||
/**
|
||||
* Print an error message reporting the position when the endstops were last hit.
|
||||
*/
|
||||
void report_state(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
||||
|
||||
/**
|
||||
* Report endstop positions in response to M119
|
||||
*/
|
||||
void M119();
|
||||
|
||||
// Enable / disable endstop checking globally
|
||||
FORCE_INLINE void enable_globally(bool onoff=true) { enabled_globally = enabled = onoff; }
|
||||
|
||||
// Enable / disable endstop checking
|
||||
FORCE_INLINE void enable(bool onoff=true) { enabled = onoff; }
|
||||
|
||||
// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
|
||||
FORCE_INLINE void not_homing() { enabled = enabled_globally; }
|
||||
|
||||
// Clear endstops (i.e., they were hit intentionally) to suppress the report
|
||||
FORCE_INLINE void hit_on_purpose() { endstop_hit_bits = 0; }
|
||||
|
||||
// Enable / disable endstop z-probe checking
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
volatile bool z_probe_enabled = false;
|
||||
FORCE_INLINE void enable_z_probe(bool onoff=true) { z_probe_enabled = onoff; }
|
||||
#endif
|
||||
|
||||
private:
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
void test_dual_z_endstops(EndstopEnum es1, EndstopEnum es2);
|
||||
#endif
|
||||
};
|
||||
|
||||
extern Endstops endstops;
|
||||
|
||||
#endif // ENDSTOPS_H
|
@ -81,105 +81,27 @@
|
||||
#include "mesh_bed_leveling.h"
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//============================= public variables ============================
|
||||
//===========================================================================
|
||||
Planner planner;
|
||||
|
||||
millis_t minsegmenttime;
|
||||
float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
|
||||
float axis_steps_per_unit[NUM_AXIS];
|
||||
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
|
||||
float minimumfeedrate;
|
||||
float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
|
||||
float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
|
||||
float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
|
||||
float max_xy_jerk; // The largest speed change requiring no acceleration
|
||||
float max_z_jerk;
|
||||
float max_e_jerk;
|
||||
float mintravelfeedrate;
|
||||
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
// Transform required to compensate for bed level
|
||||
matrix_3x3 plan_bed_level_matrix = {
|
||||
1.0, 0.0, 0.0,
|
||||
0.0, 1.0, 0.0,
|
||||
0.0, 0.0, 1.0
|
||||
};
|
||||
#endif // AUTO_BED_LEVELING_FEATURE
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
float autotemp_max = 250;
|
||||
float autotemp_min = 210;
|
||||
float autotemp_factor = 0.1;
|
||||
bool autotemp_enabled = false;
|
||||
#endif
|
||||
|
||||
#if ENABLED(FAN_SOFT_PWM)
|
||||
extern unsigned char fanSpeedSoftPwm[FAN_COUNT];
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//============ semi-private variables, used in inline functions =============
|
||||
//===========================================================================
|
||||
|
||||
block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
||||
volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||||
volatile unsigned char block_buffer_tail; // Index of the block to process now
|
||||
|
||||
//===========================================================================
|
||||
//============================ private variables ============================
|
||||
//===========================================================================
|
||||
|
||||
// The current position of the tool in absolute steps
|
||||
long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode
|
||||
static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
|
||||
static float previous_nominal_speed; // Nominal speed of previous path line segment
|
||||
|
||||
uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
|
||||
|
||||
#ifdef XY_FREQUENCY_LIMIT
|
||||
// Used for the frequency limit
|
||||
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
||||
// Old direction bits. Used for speed calculations
|
||||
static unsigned char old_direction_bits = 0;
|
||||
// Segment times (in µs). Used for speed calculations
|
||||
static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
|
||||
#endif
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
extern bool extruder_duplication_enabled;
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//================================ functions ================================
|
||||
//===========================================================================
|
||||
|
||||
// Get the next / previous index of the next block in the ring buffer
|
||||
// NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
|
||||
FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
|
||||
FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
|
||||
|
||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||
// given acceleration:
|
||||
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
|
||||
if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
|
||||
return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
|
||||
Planner::Planner() {
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
bed_level_matrix.set_to_identity();
|
||||
#endif
|
||||
init();
|
||||
}
|
||||
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
|
||||
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
|
||||
if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
|
||||
return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
|
||||
void Planner::init() {
|
||||
block_buffer_head = block_buffer_tail = 0;
|
||||
memset(position, 0, sizeof(position)); // clear position
|
||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
|
||||
previous_nominal_speed = 0.0;
|
||||
}
|
||||
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
|
||||
void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
|
||||
/**
|
||||
* Calculate trapezoid parameters, multiplying the entry- and exit-speeds
|
||||
* by the provided factors.
|
||||
*/
|
||||
void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
|
||||
unsigned long initial_rate = ceil(block->nominal_rate * entry_factor),
|
||||
final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
|
||||
|
||||
@ -225,12 +147,6 @@ void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exi
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||
// acceleration within the allotted distance.
|
||||
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
||||
return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
|
||||
}
|
||||
|
||||
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||||
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
||||
// velocities of the respective blocks.
|
||||
@ -240,8 +156,8 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
|
||||
//}
|
||||
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||
void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
|
||||
// The kernel called by recalculate() when scanning the plan from last to first entry.
|
||||
void Planner::reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
|
||||
if (!current) return;
|
||||
UNUSED(previous);
|
||||
|
||||
@ -267,31 +183,34 @@ void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* n
|
||||
} // Skip last block. Already initialized and set for recalculation.
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the reverse pass.
|
||||
void planner_reverse_pass() {
|
||||
uint8_t block_index = block_buffer_head;
|
||||
/**
|
||||
* recalculate() needs to go over the current plan twice.
|
||||
* Once in reverse and once forward. This implements the reverse pass.
|
||||
*/
|
||||
void Planner::reverse_pass() {
|
||||
|
||||
//Make a local copy of block_buffer_tail, because the interrupt can alter it
|
||||
if (movesplanned() > 3) {
|
||||
|
||||
block_t* block[3] = { NULL, NULL, NULL };
|
||||
|
||||
// Make a local copy of block_buffer_tail, because the interrupt can alter it
|
||||
CRITICAL_SECTION_START;
|
||||
unsigned char tail = block_buffer_tail;
|
||||
uint8_t tail = block_buffer_tail;
|
||||
CRITICAL_SECTION_END
|
||||
|
||||
if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
|
||||
block_index = BLOCK_MOD(block_buffer_head - 3);
|
||||
block_t* block[3] = { NULL, NULL, NULL };
|
||||
while (block_index != tail) {
|
||||
block_index = prev_block_index(block_index);
|
||||
uint8_t b = BLOCK_MOD(block_buffer_head - 3);
|
||||
while (b != tail) {
|
||||
b = prev_block_index(b);
|
||||
block[2] = block[1];
|
||||
block[1] = block[0];
|
||||
block[0] = &block_buffer[block_index];
|
||||
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
||||
block[0] = &block_buffer[b];
|
||||
reverse_pass_kernel(block[0], block[1], block[2]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||||
void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
|
||||
// The kernel called by recalculate() when scanning the plan from first to last entry.
|
||||
void Planner::forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
|
||||
if (!previous) return;
|
||||
UNUSED(next);
|
||||
|
||||
@ -312,26 +231,28 @@ void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* n
|
||||
}
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the forward pass.
|
||||
void planner_forward_pass() {
|
||||
uint8_t block_index = block_buffer_tail;
|
||||
/**
|
||||
* recalculate() needs to go over the current plan twice.
|
||||
* Once in reverse and once forward. This implements the forward pass.
|
||||
*/
|
||||
void Planner::forward_pass() {
|
||||
block_t* block[3] = { NULL, NULL, NULL };
|
||||
|
||||
while (block_index != block_buffer_head) {
|
||||
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
||||
block[0] = block[1];
|
||||
block[1] = block[2];
|
||||
block[2] = &block_buffer[block_index];
|
||||
planner_forward_pass_kernel(block[0], block[1], block[2]);
|
||||
block_index = next_block_index(block_index);
|
||||
block[2] = &block_buffer[b];
|
||||
forward_pass_kernel(block[0], block[1], block[2]);
|
||||
}
|
||||
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||||
forward_pass_kernel(block[1], block[2], NULL);
|
||||
}
|
||||
|
||||
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
|
||||
// entry_factor for each junction. Must be called by planner_recalculate() after
|
||||
// updating the blocks.
|
||||
void planner_recalculate_trapezoids() {
|
||||
/**
|
||||
* Recalculate the trapezoid speed profiles for all blocks in the plan
|
||||
* according to the entry_factor for each junction. Must be called by
|
||||
* recalculate() after updating the blocks.
|
||||
*/
|
||||
void Planner::recalculate_trapezoids() {
|
||||
int8_t block_index = block_buffer_tail;
|
||||
block_t* current;
|
||||
block_t* next = NULL;
|
||||
@ -358,54 +279,52 @@ void planner_recalculate_trapezoids() {
|
||||
}
|
||||
}
|
||||
|
||||
// Recalculates the motion plan according to the following algorithm:
|
||||
//
|
||||
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
||||
// so that:
|
||||
// a. The junction jerk is within the set limit
|
||||
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
||||
// acceleration.
|
||||
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
||||
// a. The speed increase within one block would require faster acceleration than the one, true
|
||||
// constant acceleration.
|
||||
//
|
||||
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
||||
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
||||
// the set limit. Finally it will:
|
||||
//
|
||||
// 3. Recalculate trapezoids for all blocks.
|
||||
|
||||
void planner_recalculate() {
|
||||
planner_reverse_pass();
|
||||
planner_forward_pass();
|
||||
planner_recalculate_trapezoids();
|
||||
}
|
||||
|
||||
void plan_init() {
|
||||
block_buffer_head = block_buffer_tail = 0;
|
||||
memset(position, 0, sizeof(position)); // clear position
|
||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
|
||||
previous_nominal_speed = 0.0;
|
||||
/*
|
||||
* Recalculate the motion plan according to the following algorithm:
|
||||
*
|
||||
* 1. Go over every block in reverse order...
|
||||
*
|
||||
* Calculate a junction speed reduction (block_t.entry_factor) so:
|
||||
*
|
||||
* a. The junction jerk is within the set limit, and
|
||||
*
|
||||
* b. No speed reduction within one block requires faster
|
||||
* deceleration than the one, true constant acceleration.
|
||||
*
|
||||
* 2. Go over every block in chronological order...
|
||||
*
|
||||
* Dial down junction speed reduction values if:
|
||||
* a. The speed increase within one block would require faster
|
||||
* acceleration than the one, true constant acceleration.
|
||||
*
|
||||
* After that, all blocks will have an entry_factor allowing all speed changes to
|
||||
* be performed using only the one, true constant acceleration, and where no junction
|
||||
* jerk is jerkier than the set limit, Jerky. Finally it will:
|
||||
*
|
||||
* 3. Recalculate "trapezoids" for all blocks.
|
||||
*/
|
||||
void Planner::recalculate() {
|
||||
reverse_pass();
|
||||
forward_pass();
|
||||
recalculate_trapezoids();
|
||||
}
|
||||
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
void getHighESpeed() {
|
||||
|
||||
void Planner::getHighESpeed() {
|
||||
static float oldt = 0;
|
||||
|
||||
if (!autotemp_enabled) return;
|
||||
if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
|
||||
|
||||
float high = 0.0;
|
||||
uint8_t block_index = block_buffer_tail;
|
||||
|
||||
while (block_index != block_buffer_head) {
|
||||
block_t* block = &block_buffer[block_index];
|
||||
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
||||
block_t* block = &block_buffer[b];
|
||||
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
|
||||
float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
|
||||
NOLESS(high, se);
|
||||
}
|
||||
block_index = next_block_index(block_index);
|
||||
}
|
||||
|
||||
float t = autotemp_min + high * autotemp_factor;
|
||||
@ -417,9 +336,13 @@ void plan_init() {
|
||||
oldt = t;
|
||||
setTargetHotend0(t);
|
||||
}
|
||||
|
||||
#endif //AUTOTEMP
|
||||
|
||||
void check_axes_activity() {
|
||||
/**
|
||||
* Maintain fans, paste extruder pressure,
|
||||
*/
|
||||
void Planner::check_axes_activity() {
|
||||
unsigned char axis_active[NUM_AXIS] = { 0 },
|
||||
tail_fan_speed[FAN_COUNT];
|
||||
|
||||
@ -432,26 +355,23 @@ void check_axes_activity() {
|
||||
tail_e_to_p_pressure = baricuda_e_to_p_pressure;
|
||||
#endif
|
||||
|
||||
block_t* block;
|
||||
|
||||
if (blocks_queued()) {
|
||||
|
||||
uint8_t block_index = block_buffer_tail;
|
||||
|
||||
#if FAN_COUNT > 0
|
||||
for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_index].fan_speed[i];
|
||||
for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
|
||||
#endif
|
||||
|
||||
block_t* block;
|
||||
|
||||
#if ENABLED(BARICUDA)
|
||||
block = &block_buffer[block_index];
|
||||
block = &block_buffer[block_buffer_tail];
|
||||
tail_valve_pressure = block->valve_pressure;
|
||||
tail_e_to_p_pressure = block->e_to_p_pressure;
|
||||
#endif
|
||||
|
||||
while (block_index != block_buffer_head) {
|
||||
block = &block_buffer[block_index];
|
||||
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
||||
block = &block_buffer[b];
|
||||
for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
|
||||
block_index = next_block_index(block_index);
|
||||
}
|
||||
}
|
||||
#if ENABLED(DISABLE_X)
|
||||
@ -549,15 +469,20 @@ void check_axes_activity() {
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Planner::buffer_line
|
||||
*
|
||||
* Add a new linear movement to the buffer.
|
||||
*
|
||||
* x,y,z,e - target position in mm
|
||||
* feed_rate - (target) speed of the move
|
||||
* extruder - target extruder
|
||||
*/
|
||||
|
||||
float junction_deviation = 0.1;
|
||||
// Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
|
||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
|
||||
void Planner::buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
|
||||
#else
|
||||
void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
|
||||
void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
|
||||
#endif // AUTO_BED_LEVELING_FEATURE
|
||||
{
|
||||
// Calculate the buffer head after we push this byte
|
||||
@ -570,7 +495,7 @@ float junction_deviation = 0.1;
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
if (mbl.active) z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
||||
apply_rotation_xyz(bed_level_matrix, x, y, z);
|
||||
#endif
|
||||
|
||||
// The target position of the tool in absolute steps
|
||||
@ -703,7 +628,8 @@ float junction_deviation = 0.1;
|
||||
|
||||
// Enable extruder(s)
|
||||
if (block->steps[E_AXIS]) {
|
||||
if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
|
||||
|
||||
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
|
||||
|
||||
for (int i = 0; i < EXTRUDERS; i++)
|
||||
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
|
||||
@ -762,19 +688,18 @@ float junction_deviation = 0.1;
|
||||
#endif // EXTRUDERS > 2
|
||||
#endif // EXTRUDERS > 1
|
||||
}
|
||||
}
|
||||
else { // enable all
|
||||
#else
|
||||
enable_e0();
|
||||
enable_e1();
|
||||
enable_e2();
|
||||
enable_e3();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (block->steps[E_AXIS])
|
||||
NOLESS(feed_rate, minimumfeedrate);
|
||||
NOLESS(feed_rate, min_feedrate);
|
||||
else
|
||||
NOLESS(feed_rate, mintravelfeedrate);
|
||||
NOLESS(feed_rate, min_travel_feedrate);
|
||||
|
||||
/**
|
||||
* This part of the code calculates the total length of the movement.
|
||||
@ -837,9 +762,9 @@ float junction_deviation = 0.1;
|
||||
// segment time im micro seconds
|
||||
unsigned long segment_time = lround(1000000.0/inverse_second);
|
||||
if (mq) {
|
||||
if (segment_time < minsegmenttime) {
|
||||
if (segment_time < min_segment_time) {
|
||||
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
||||
inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
|
||||
inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
|
||||
#ifdef XY_FREQUENCY_LIMIT
|
||||
segment_time = lround(1000000.0 / inverse_second);
|
||||
#endif
|
||||
@ -968,6 +893,9 @@ float junction_deviation = 0.1;
|
||||
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
|
||||
|
||||
#if 0 // Use old jerk for now
|
||||
|
||||
float junction_deviation = 0.1;
|
||||
|
||||
// Compute path unit vector
|
||||
double unit_vec[3];
|
||||
|
||||
@ -1083,11 +1011,11 @@ float junction_deviation = 0.1;
|
||||
// Update position
|
||||
for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
|
||||
|
||||
planner_recalculate();
|
||||
recalculate();
|
||||
|
||||
st_wake_up();
|
||||
stepper.wake_up();
|
||||
|
||||
} // plan_buffer_line()
|
||||
} // buffer_line()
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
|
||||
|
||||
@ -1096,13 +1024,15 @@ float junction_deviation = 0.1;
|
||||
*
|
||||
* On CORE machines XYZ is derived from ABC.
|
||||
*/
|
||||
vector_3 plan_get_position() {
|
||||
vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS));
|
||||
vector_3 Planner::adjusted_position() {
|
||||
vector_3 position = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
|
||||
|
||||
//position.debug("in Planner::position");
|
||||
//bed_level_matrix.debug("in Planner::position");
|
||||
|
||||
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
||||
//inverse.debug("in Planner::inverse");
|
||||
|
||||
//position.debug("in plan_get position");
|
||||
//plan_bed_level_matrix.debug("in plan_get_position");
|
||||
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
|
||||
//inverse.debug("in plan_get inverse");
|
||||
position.apply_rotation(inverse);
|
||||
//position.debug("after rotation");
|
||||
|
||||
@ -1117,34 +1047,48 @@ float junction_deviation = 0.1;
|
||||
* On CORE machines stepper ABC will be translated from the given XYZ.
|
||||
*/
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
void plan_set_position(float x, float y, float z, const float& e)
|
||||
void Planner::set_position(float x, float y, float z, const float& e)
|
||||
#else
|
||||
void plan_set_position(const float& x, const float& y, const float& z, const float& e)
|
||||
void Planner::set_position(const float& x, const float& y, const float& z, const float& e)
|
||||
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
|
||||
{
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
if (mbl.active) z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
||||
apply_rotation_xyz(bed_level_matrix, x, y, z);
|
||||
#endif
|
||||
|
||||
long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
|
||||
ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
|
||||
nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
|
||||
ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||
st_set_position(nx, ny, nz, ne);
|
||||
stepper.set_position(nx, ny, nz, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
|
||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
|
||||
}
|
||||
|
||||
void plan_set_e_position(const float& e) {
|
||||
/**
|
||||
* Directly set the planner E position (hence the stepper E position).
|
||||
*/
|
||||
void Planner::set_e_position(const float& e) {
|
||||
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||
st_set_e_position(position[E_AXIS]);
|
||||
stepper.set_e_position(position[E_AXIS]);
|
||||
}
|
||||
|
||||
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
|
||||
void reset_acceleration_rates() {
|
||||
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
||||
void Planner::reset_acceleration_rates() {
|
||||
for (int i = 0; i < NUM_AXIS; i++)
|
||||
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
||||
}
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
|
||||
void Planner::autotemp_M109() {
|
||||
autotemp_enabled = code_seen('F');
|
||||
if (autotemp_enabled) autotemp_factor = code_value();
|
||||
if (code_seen('S')) autotemp_min = code_value();
|
||||
if (code_seen('B')) autotemp_max = code_value();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
272
Marlin/planner.h
272
Marlin/planner.h
@ -48,17 +48,36 @@
|
||||
|
||||
#include "Marlin.h"
|
||||
|
||||
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
||||
// the source g-code and may never actually be reached if acceleration management is active.
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
#include "vector_3.h"
|
||||
#endif
|
||||
|
||||
class Planner;
|
||||
extern Planner planner;
|
||||
|
||||
/**
|
||||
* struct block_t
|
||||
*
|
||||
* A single entry in the planner buffer.
|
||||
* Tracks linear movement over multiple axes.
|
||||
*
|
||||
* The "nominal" values are as-specified by gcode, and
|
||||
* may never actually be reached due to acceleration limits.
|
||||
*/
|
||||
typedef struct {
|
||||
|
||||
unsigned char active_extruder; // The extruder to move (if E move)
|
||||
|
||||
// Fields used by the bresenham algorithm for tracing the line
|
||||
long steps[NUM_AXIS]; // Step count along each axis
|
||||
unsigned long step_event_count; // The number of step events required to complete this block
|
||||
|
||||
long accelerate_until; // The index of the step event on which to stop acceleration
|
||||
long decelerate_after; // The index of the step event on which to start decelerating
|
||||
long acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||
|
||||
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
||||
unsigned char active_extruder; // Selects the active extruder
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
long advance_rate;
|
||||
volatile long initial_advance;
|
||||
@ -67,7 +86,6 @@ typedef struct {
|
||||
#endif
|
||||
|
||||
// Fields used by the motion planner to manage acceleration
|
||||
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
|
||||
float nominal_speed; // The nominal speed for this block in mm/sec
|
||||
float entry_speed; // Entry speed at previous-current junction in mm/sec
|
||||
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec
|
||||
@ -97,93 +115,150 @@ typedef struct {
|
||||
|
||||
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
|
||||
|
||||
// Initialize the motion plan subsystem
|
||||
void plan_init();
|
||||
class Planner {
|
||||
|
||||
void check_axes_activity();
|
||||
public:
|
||||
|
||||
// Get the number of buffered moves
|
||||
extern volatile unsigned char block_buffer_head;
|
||||
extern volatile unsigned char block_buffer_tail;
|
||||
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
|
||||
/**
|
||||
* A ring buffer of moves described in steps
|
||||
*/
|
||||
block_t block_buffer[BLOCK_BUFFER_SIZE];
|
||||
volatile uint8_t block_buffer_head = 0; // Index of the next block to be pushed
|
||||
volatile uint8_t block_buffer_tail = 0;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
|
||||
float axis_steps_per_unit[NUM_AXIS];
|
||||
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
|
||||
|
||||
millis_t min_segment_time;
|
||||
float min_feedrate;
|
||||
float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
|
||||
float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
|
||||
float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
|
||||
float max_xy_jerk; // The largest speed change requiring no acceleration
|
||||
float max_z_jerk;
|
||||
float max_e_jerk;
|
||||
float min_travel_feedrate;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
#include "vector_3.h"
|
||||
matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
||||
#endif
|
||||
|
||||
// Transform required to compensate for bed level
|
||||
extern matrix_3x3 plan_bed_level_matrix;
|
||||
private:
|
||||
|
||||
/**
|
||||
* Get the position applying the bed level matrix
|
||||
* The current position of the tool in absolute steps
|
||||
* Reclculated if any axis_steps_per_unit are changed by gcode
|
||||
*/
|
||||
vector_3 plan_get_position();
|
||||
#endif // AUTO_BED_LEVELING_FEATURE
|
||||
long position[NUM_AXIS] = { 0 };
|
||||
|
||||
/**
|
||||
* Add a new linear movement to the buffer. x, y, z are the signed, absolute target position in
|
||||
* millimeters. Feed rate specifies the (target) speed of the motion.
|
||||
* Speed of previous path line segment
|
||||
*/
|
||||
void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder);
|
||||
float previous_speed[NUM_AXIS];
|
||||
|
||||
/**
|
||||
* Set the planner positions. Used for G92 instructions.
|
||||
* Multiplies by axis_steps_per_unit[] to set stepper positions.
|
||||
* Nominal speed of previous path line segment
|
||||
*/
|
||||
float previous_nominal_speed;
|
||||
|
||||
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
|
||||
/**
|
||||
* Counters to manage disabling inactive extruders
|
||||
*/
|
||||
uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
|
||||
#endif // DISABLE_INACTIVE_EXTRUDER
|
||||
|
||||
#ifdef XY_FREQUENCY_LIMIT
|
||||
// Used for the frequency limit
|
||||
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
||||
// Old direction bits. Used for speed calculations
|
||||
static unsigned char old_direction_bits = 0;
|
||||
// Segment times (in µs). Used for speed calculations
|
||||
static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
|
||||
#endif
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
extern bool extruder_duplication_enabled;
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
Planner();
|
||||
|
||||
void init();
|
||||
|
||||
void reset_acceleration_rates();
|
||||
|
||||
// Manage fans, paste pressure, etc.
|
||||
void check_axes_activity();
|
||||
|
||||
/**
|
||||
* Number of moves currently in the planner
|
||||
*/
|
||||
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
/**
|
||||
* The corrected position, applying the bed level matrix
|
||||
*/
|
||||
vector_3 adjusted_position();
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Add a new linear movement to the buffer.
|
||||
*
|
||||
* x,y,z,e - target position in mm
|
||||
* feed_rate - (target) speed of the move
|
||||
* extruder - target extruder
|
||||
*/
|
||||
void buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder);
|
||||
|
||||
/**
|
||||
* Set the planner.position and individual stepper positions.
|
||||
* Used by G92, G28, G29, and other procedures.
|
||||
*
|
||||
* Multiplies by axis_steps_per_unit[] and does necessary conversion
|
||||
* for COREXY / COREXZ to set the corresponding stepper positions.
|
||||
*
|
||||
* Clears previous speed values.
|
||||
*/
|
||||
void plan_set_position(float x, float y, float z, const float& e);
|
||||
void set_position(float x, float y, float z, const float& e);
|
||||
|
||||
#else
|
||||
#else
|
||||
|
||||
void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder);
|
||||
void plan_set_position(const float& x, const float& y, const float& z, const float& e);
|
||||
void buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder);
|
||||
void set_position(const float& x, const float& y, const float& z, const float& e);
|
||||
|
||||
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
|
||||
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
|
||||
|
||||
void plan_set_e_position(const float& e);
|
||||
/**
|
||||
* Set the E position (mm) of the planner (and the E stepper)
|
||||
*/
|
||||
void set_e_position(const float& e);
|
||||
|
||||
//===========================================================================
|
||||
//============================= public variables ============================
|
||||
//===========================================================================
|
||||
/**
|
||||
* Does the buffer have any blocks queued?
|
||||
*/
|
||||
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
|
||||
|
||||
extern millis_t minsegmenttime;
|
||||
extern float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
|
||||
extern float axis_steps_per_unit[NUM_AXIS];
|
||||
extern unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
|
||||
extern float minimumfeedrate;
|
||||
extern float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
|
||||
extern float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
|
||||
extern float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
|
||||
extern float max_xy_jerk; // The largest speed change requiring no acceleration
|
||||
extern float max_z_jerk;
|
||||
extern float max_e_jerk;
|
||||
extern float mintravelfeedrate;
|
||||
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
extern bool autotemp_enabled;
|
||||
extern float autotemp_max;
|
||||
extern float autotemp_min;
|
||||
extern float autotemp_factor;
|
||||
#endif
|
||||
|
||||
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||||
extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||||
extern volatile unsigned char block_buffer_tail;
|
||||
|
||||
// Returns true if the buffer has a queued block, false otherwise
|
||||
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
|
||||
|
||||
// Called when the current block is no longer needed. Discards
|
||||
// the block and makes the memory available for new blocks.
|
||||
FORCE_INLINE void plan_discard_current_block() {
|
||||
/**
|
||||
* "Discards" the block and "releases" the memory.
|
||||
* Called when the current block is no longer needed.
|
||||
*/
|
||||
FORCE_INLINE void discard_current_block() {
|
||||
if (blocks_queued())
|
||||
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Gets the current block. Returns NULL if buffer empty
|
||||
FORCE_INLINE block_t* plan_get_current_block() {
|
||||
/**
|
||||
* The current block. NULL if the buffer is empty.
|
||||
* This also marks the block as busy.
|
||||
*/
|
||||
FORCE_INLINE block_t* get_current_block() {
|
||||
if (blocks_queued()) {
|
||||
block_t* block = &block_buffer[block_buffer_tail];
|
||||
block->busy = true;
|
||||
@ -191,8 +266,69 @@ FORCE_INLINE block_t* plan_get_current_block() {
|
||||
}
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void reset_acceleration_rates();
|
||||
/**
|
||||
* Get the index of the next / previous block in the ring buffer
|
||||
*/
|
||||
FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
|
||||
FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
|
||||
|
||||
/**
|
||||
* Calculate the distance (not time) it takes to accelerate
|
||||
* from initial_rate to target_rate using the given acceleration:
|
||||
*/
|
||||
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
|
||||
if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
|
||||
return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the point at which you must start braking (at the rate of -'acceleration') if
|
||||
* you start at 'initial_rate', accelerate (until reaching the point), and want to end at
|
||||
* 'final_rate' after traveling 'distance'.
|
||||
*
|
||||
* This is used to compute the intersection point between acceleration and deceleration
|
||||
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
|
||||
*/
|
||||
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
|
||||
if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
|
||||
return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the maximum allowable speed at this point, in order
|
||||
* to reach 'target_velocity' using 'acceleration' within a given
|
||||
* 'distance'.
|
||||
*/
|
||||
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
||||
return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
|
||||
}
|
||||
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
float autotemp_max = 250;
|
||||
float autotemp_min = 210;
|
||||
float autotemp_factor = 0.1;
|
||||
bool autotemp_enabled = false;
|
||||
void getHighESpeed();
|
||||
void autotemp_M109();
|
||||
#endif
|
||||
|
||||
private:
|
||||
|
||||
void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
|
||||
|
||||
void reverse_pass_kernel(block_t* previous, block_t* current, block_t* next);
|
||||
void forward_pass_kernel(block_t* previous, block_t* current, block_t* next);
|
||||
|
||||
void reverse_pass();
|
||||
void forward_pass();
|
||||
|
||||
void recalculate_trapezoids();
|
||||
|
||||
void recalculate();
|
||||
|
||||
};
|
||||
|
||||
#endif // PLANNER_H
|
||||
|
@ -21,7 +21,7 @@
|
||||
*/
|
||||
|
||||
/**
|
||||
* stepper.cpp - stepper motor driver: executes motion plans using stepper motors
|
||||
* stepper.cpp - A singleton object to execute motion plans using stepper motors
|
||||
* Marlin Firmware
|
||||
*
|
||||
* Derived from Grbl
|
||||
@ -46,6 +46,7 @@
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "stepper.h"
|
||||
#include "endstops.h"
|
||||
#include "planner.h"
|
||||
#include "temperature.h"
|
||||
#include "ultralcd.h"
|
||||
@ -57,85 +58,7 @@
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//============================= public variables ============================
|
||||
//===========================================================================
|
||||
block_t* current_block; // A pointer to the block currently being traced
|
||||
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
volatile bool z_probe_is_active = false;
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//============================= private variables ===========================
|
||||
//===========================================================================
|
||||
//static makes it impossible to be called from outside of this file by extern.!
|
||||
|
||||
// Variables used by The Stepper Driver Interrupt
|
||||
static unsigned char out_bits = 0; // The next stepping-bits to be output
|
||||
static unsigned int cleaning_buffer_counter;
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
static bool performing_homing = false,
|
||||
locked_z_motor = false,
|
||||
locked_z2_motor = false;
|
||||
#endif
|
||||
|
||||
// Counter variables for the Bresenham line tracer
|
||||
static long counter_x, counter_y, counter_z, counter_e;
|
||||
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
static long advance_rate, advance, final_advance = 0;
|
||||
static long old_advance = 0;
|
||||
static long e_steps[4];
|
||||
#endif
|
||||
|
||||
static long acceleration_time, deceleration_time;
|
||||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
static unsigned short acc_step_rate; // needed for deceleration start point
|
||||
static uint8_t step_loops;
|
||||
static uint8_t step_loops_nominal;
|
||||
static unsigned short OCR1A_nominal;
|
||||
|
||||
volatile long endstops_trigsteps[3] = { 0 };
|
||||
volatile long endstops_stepsTotal, endstops_stepsDone;
|
||||
static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
||||
|
||||
#if DISABLED(Z_DUAL_ENDSTOPS)
|
||||
static byte
|
||||
#else
|
||||
static uint16_t
|
||||
#endif
|
||||
old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
bool abort_on_endstop_hit = false;
|
||||
#endif
|
||||
|
||||
#if HAS_MOTOR_CURRENT_PWM
|
||||
#ifndef PWM_MOTOR_CURRENT
|
||||
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
|
||||
#endif
|
||||
const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
|
||||
#endif
|
||||
|
||||
static bool check_endstops = true;
|
||||
static bool check_endstops_global =
|
||||
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
|
||||
false
|
||||
#else
|
||||
true
|
||||
#endif
|
||||
;
|
||||
|
||||
volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
|
||||
volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//================================ functions ================================
|
||||
//===========================================================================
|
||||
Stepper stepper; // Singleton
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
#define X_APPLY_DIR(v,ALWAYS) \
|
||||
@ -173,12 +96,12 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
#define Z_APPLY_STEP(v,Q) \
|
||||
if (performing_homing) { \
|
||||
if (Z_HOME_DIR > 0) {\
|
||||
if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
||||
if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
||||
if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
||||
if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
||||
} \
|
||||
else { \
|
||||
if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
||||
if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
||||
if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
||||
if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
||||
} \
|
||||
} \
|
||||
else { \
|
||||
@ -195,31 +118,6 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
|
||||
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
|
||||
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 24 bit result
|
||||
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %A1, %A2 \n\t" \
|
||||
"add %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r0 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (charIn1), \
|
||||
"d" (intIn2) \
|
||||
: \
|
||||
"r26" \
|
||||
)
|
||||
|
||||
// intRes = longIn1 * longIn2 >> 24
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
@ -281,312 +179,38 @@ volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
|
||||
|
||||
void enable_endstops(bool check) { check_endstops = check; }
|
||||
|
||||
void enable_endstops_globally(bool check) { check_endstops_global = check_endstops = check; }
|
||||
|
||||
void endstops_not_homing() { check_endstops = check_endstops_global; }
|
||||
|
||||
void endstops_hit_on_purpose() { endstop_hit_bits = 0; }
|
||||
|
||||
void checkHitEndstops() {
|
||||
if (endstop_hit_bits) {
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
|
||||
#define _SET_STOP_CHAR(A,C) (chr## A = C)
|
||||
#else
|
||||
#define _SET_STOP_CHAR(A,C) ;
|
||||
#endif
|
||||
|
||||
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
|
||||
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", endstops_trigsteps[A ##_AXIS] / axis_steps_per_unit[A ##_AXIS]); \
|
||||
_SET_STOP_CHAR(A,C); }while(0)
|
||||
|
||||
#define _ENDSTOP_HIT_TEST(A,C) \
|
||||
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
|
||||
_ENDSTOP_HIT_ECHO(A,C)
|
||||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
|
||||
_ENDSTOP_HIT_TEST(X, 'X');
|
||||
_ENDSTOP_HIT_TEST(Y, 'Y');
|
||||
_ENDSTOP_HIT_TEST(Z, 'Z');
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
||||
#define P_AXIS Z_AXIS
|
||||
if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
|
||||
#endif
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
|
||||
sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
|
||||
lcd_setstatus(msg);
|
||||
#endif
|
||||
|
||||
endstops_hit_on_purpose();
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
|
||||
if (abort_on_endstop_hit) {
|
||||
card.sdprinting = false;
|
||||
card.closefile();
|
||||
quickStop();
|
||||
disable_all_heaters(); // switch off all heaters.
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Check endstops - Called from ISR!
|
||||
inline void update_endstops() {
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
uint16_t
|
||||
#else
|
||||
byte
|
||||
#endif
|
||||
current_endstop_bits = 0;
|
||||
|
||||
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
|
||||
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
|
||||
#define _AXIS(AXIS) AXIS ##_AXIS
|
||||
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
|
||||
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
||||
|
||||
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
|
||||
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
|
||||
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
|
||||
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
|
||||
// TEST_ENDSTOP: test the old and the current status of an endstop
|
||||
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
|
||||
#define _SET_TRIGSTEPS(AXIS) do { \
|
||||
float axis_pos = count_position[_AXIS(AXIS)]; \
|
||||
if (_AXIS(AXIS) == A_AXIS) \
|
||||
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
|
||||
else if (_AXIS(AXIS) == CORE_AXIS_2) \
|
||||
axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
|
||||
endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
|
||||
} while(0)
|
||||
|
||||
#else
|
||||
|
||||
#define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
|
||||
|
||||
#endif // COREXY || COREXZ
|
||||
|
||||
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
|
||||
SET_ENDSTOP_BIT(AXIS, MINMAX); \
|
||||
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
|
||||
_SET_TRIGSTEPS(AXIS); \
|
||||
_ENDSTOP_HIT(AXIS); \
|
||||
step_events_completed = current_block->step_event_count; \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
// Head direction in -X axis for CoreXY and CoreXZ bots.
|
||||
// If Delta1 == -Delta2, the movement is only in Y or Z axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
|
||||
if (TEST(out_bits, X_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
|
||||
#endif
|
||||
{ // -direction
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||
#endif
|
||||
{
|
||||
#if HAS_X_MIN
|
||||
UPDATE_ENDSTOP(X, MIN);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||
#endif
|
||||
{
|
||||
#if HAS_X_MAX
|
||||
UPDATE_ENDSTOP(X, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(COREXY)
|
||||
// Head direction in -Y axis for CoreXY bots.
|
||||
// If DeltaX == DeltaY, the movement is only in X axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
|
||||
if (TEST(out_bits, Y_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, Y_AXIS)) // -direction
|
||||
#endif
|
||||
{ // -direction
|
||||
#if HAS_Y_MIN
|
||||
UPDATE_ENDSTOP(Y, MIN);
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
#if HAS_Y_MAX
|
||||
UPDATE_ENDSTOP(Y, MAX);
|
||||
#endif
|
||||
}
|
||||
#if ENABLED(COREXY)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(COREXZ)
|
||||
// Head direction in -Z axis for CoreXZ bots.
|
||||
// If DeltaX == DeltaZ, the movement is only in X axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
|
||||
if (TEST(out_bits, Z_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, Z_AXIS))
|
||||
#endif
|
||||
{ // z -direction
|
||||
#if HAS_Z_MIN
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
SET_ENDSTOP_BIT(Z, MIN);
|
||||
#if HAS_Z2_MIN
|
||||
SET_ENDSTOP_BIT(Z2, MIN);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
||||
#endif
|
||||
|
||||
byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
|
||||
|
||||
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
SBI(endstop_hit_bits, Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (z_probe_is_active) UPDATE_ENDSTOP(Z, MIN);
|
||||
#else
|
||||
UPDATE_ENDSTOP(Z, MIN);
|
||||
#endif
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (z_probe_is_active) {
|
||||
UPDATE_ENDSTOP(Z, MIN_PROBE);
|
||||
if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else { // z +direction
|
||||
#if HAS_Z_MAX
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
|
||||
SET_ENDSTOP_BIT(Z, MAX);
|
||||
#if HAS_Z2_MAX
|
||||
SET_ENDSTOP_BIT(Z2, MAX);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
|
||||
#endif
|
||||
|
||||
byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
|
||||
|
||||
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
SBI(endstop_hit_bits, Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
UPDATE_ENDSTOP(Z, MAX);
|
||||
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif // Z_MAX_PIN
|
||||
}
|
||||
#if ENABLED(COREXZ)
|
||||
}
|
||||
#endif
|
||||
old_endstop_bits = current_endstop_bits;
|
||||
}
|
||||
|
||||
// __________________________
|
||||
// /| |\ _________________ ^
|
||||
// / | | \ /| |\ |
|
||||
// / | | \ / | | \ s
|
||||
// / | | | | | \ p
|
||||
// / | | | | | \ e
|
||||
// +-----+------------------------+---+--+---------------+----+ e
|
||||
// | BLOCK 1 | BLOCK 2 | d
|
||||
//
|
||||
// time ----->
|
||||
//
|
||||
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||||
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||||
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||||
// The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
|
||||
|
||||
void st_wake_up() {
|
||||
/**
|
||||
* __________________________
|
||||
* /| |\ _________________ ^
|
||||
* / | | \ /| |\ |
|
||||
* / | | \ / | | \ s
|
||||
* / | | | | | \ p
|
||||
* / | | | | | \ e
|
||||
* +-----+------------------------+---+--+---------------+----+ e
|
||||
* | BLOCK 1 | BLOCK 2 | d
|
||||
*
|
||||
* time ----->
|
||||
*
|
||||
* The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||||
* first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||||
* step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||||
* The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
|
||||
*/
|
||||
void Stepper::wake_up() {
|
||||
// TCNT1 = 0;
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||
unsigned short timer;
|
||||
|
||||
NOMORE(step_rate, MAX_STEP_FREQUENCY);
|
||||
|
||||
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||
step_rate = (step_rate >> 2) & 0x3fff;
|
||||
step_loops = 4;
|
||||
}
|
||||
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
||||
step_rate = (step_rate >> 1) & 0x7fff;
|
||||
step_loops = 2;
|
||||
}
|
||||
else {
|
||||
step_loops = 1;
|
||||
}
|
||||
|
||||
NOLESS(step_rate, F_CPU / 500000);
|
||||
step_rate -= F_CPU / 500000; // Correct for minimal speed
|
||||
if (step_rate >= (8 * 256)) { // higher step rate
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
|
||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
|
||||
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
||||
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
||||
}
|
||||
else { // lower step rates
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
||||
table_address += ((step_rate) >> 1) & 0xfffc;
|
||||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
|
||||
}
|
||||
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
|
||||
return timer;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the stepper direction of each axis
|
||||
*
|
||||
* X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
|
||||
* X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
|
||||
*/
|
||||
void set_stepper_direction() {
|
||||
void Stepper::set_directions() {
|
||||
|
||||
#define SET_STEP_DIR(AXIS) \
|
||||
if (TEST(out_bits, AXIS ##_AXIS)) { \
|
||||
if (motor_direction(AXIS ##_AXIS)) { \
|
||||
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
|
||||
count_direction[AXIS ##_AXIS] = -1; \
|
||||
} \
|
||||
@ -600,7 +224,7 @@ void set_stepper_direction() {
|
||||
SET_STEP_DIR(Z); // C
|
||||
|
||||
#if DISABLED(ADVANCE)
|
||||
if (TEST(out_bits, E_AXIS)) {
|
||||
if (motor_direction(E_AXIS)) {
|
||||
REV_E_DIR();
|
||||
count_direction[E_AXIS] = -1;
|
||||
}
|
||||
@ -611,52 +235,14 @@ void set_stepper_direction() {
|
||||
#endif //!ADVANCE
|
||||
}
|
||||
|
||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||
// block begins.
|
||||
FORCE_INLINE void trapezoid_generator_reset() {
|
||||
|
||||
static int8_t last_extruder = -1;
|
||||
|
||||
if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) {
|
||||
out_bits = current_block->direction_bits;
|
||||
last_extruder = current_block->active_extruder;
|
||||
set_stepper_direction();
|
||||
}
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
advance = current_block->initial_advance;
|
||||
final_advance = current_block->final_advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
#endif
|
||||
deceleration_time = 0;
|
||||
// step_rate to timer interval
|
||||
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
||||
// make a note of the number of step loops required at nominal speed
|
||||
step_loops_nominal = step_loops;
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
OCR1A = acceleration_time;
|
||||
|
||||
// SERIAL_ECHO_START;
|
||||
// SERIAL_ECHOPGM("advance :");
|
||||
// SERIAL_ECHO(current_block->advance/256.0);
|
||||
// SERIAL_ECHOPGM("advance rate :");
|
||||
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
||||
// SERIAL_ECHOPGM("initial advance :");
|
||||
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||
// SERIAL_ECHOPGM("final advance :");
|
||||
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||
ISR(TIMER1_COMPA_vect) {
|
||||
ISR(TIMER1_COMPA_vect) { stepper.isr(); }
|
||||
|
||||
void Stepper::isr() {
|
||||
if (cleaning_buffer_counter) {
|
||||
current_block = NULL;
|
||||
plan_discard_current_block();
|
||||
planner.discard_current_block();
|
||||
#ifdef SD_FINISHED_RELEASECOMMAND
|
||||
if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
|
||||
#endif
|
||||
@ -668,12 +254,12 @@ ISR(TIMER1_COMPA_vect) {
|
||||
// If there is no current block, attempt to pop one from the buffer
|
||||
if (!current_block) {
|
||||
// Anything in the buffer?
|
||||
current_block = plan_get_current_block();
|
||||
current_block = planner.get_current_block();
|
||||
if (current_block) {
|
||||
current_block->busy = true;
|
||||
trapezoid_generator_reset();
|
||||
counter_x = -(current_block->step_event_count >> 1);
|
||||
counter_y = counter_z = counter_e = counter_x;
|
||||
counter_X = -(current_block->step_event_count >> 1);
|
||||
counter_Y = counter_Z = counter_E = counter_X;
|
||||
step_events_completed = 0;
|
||||
|
||||
#if ENABLED(Z_LATE_ENABLE)
|
||||
@ -697,9 +283,9 @@ ISR(TIMER1_COMPA_vect) {
|
||||
|
||||
// Update endstops state, if enabled
|
||||
#if ENABLED(HAS_Z_MIN_PROBE)
|
||||
if (check_endstops || z_probe_is_active) update_endstops();
|
||||
if (endstops.enabled || endstops.z_probe_enabled) endstops.update();
|
||||
#else
|
||||
if (check_endstops) update_endstops();
|
||||
if (endstops.enabled) endstops.update();
|
||||
#endif
|
||||
|
||||
// Take multiple steps per interrupt (For high speed moves)
|
||||
@ -709,48 +295,47 @@ ISR(TIMER1_COMPA_vect) {
|
||||
#endif
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
counter_e += current_block->steps[E_AXIS];
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
|
||||
counter_E += current_block->steps[E_AXIS];
|
||||
if (counter_E > 0) {
|
||||
counter_E -= current_block->step_event_count;
|
||||
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
|
||||
}
|
||||
#endif //ADVANCE
|
||||
|
||||
#define _COUNTER(axis) counter_## axis
|
||||
#define _COUNTER(AXIS) counter_## AXIS
|
||||
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
||||
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
||||
|
||||
#define STEP_ADD(axis, AXIS) \
|
||||
_COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
|
||||
if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
||||
#define STEP_ADD(AXIS) \
|
||||
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
|
||||
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
||||
|
||||
STEP_ADD(x,X);
|
||||
STEP_ADD(y,Y);
|
||||
STEP_ADD(z,Z);
|
||||
STEP_ADD(X);
|
||||
STEP_ADD(Y);
|
||||
STEP_ADD(Z);
|
||||
#if DISABLED(ADVANCE)
|
||||
STEP_ADD(e,E);
|
||||
STEP_ADD(E);
|
||||
#endif
|
||||
|
||||
#define STEP_IF_COUNTER(axis, AXIS) \
|
||||
if (_COUNTER(axis) > 0) { \
|
||||
_COUNTER(axis) -= current_block->step_event_count; \
|
||||
#define STEP_IF_COUNTER(AXIS) \
|
||||
if (_COUNTER(AXIS) > 0) { \
|
||||
_COUNTER(AXIS) -= current_block->step_event_count; \
|
||||
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
||||
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
||||
}
|
||||
|
||||
STEP_IF_COUNTER(x, X);
|
||||
STEP_IF_COUNTER(y, Y);
|
||||
STEP_IF_COUNTER(z, Z);
|
||||
STEP_IF_COUNTER(X);
|
||||
STEP_IF_COUNTER(Y);
|
||||
STEP_IF_COUNTER(Z);
|
||||
#if DISABLED(ADVANCE)
|
||||
STEP_IF_COUNTER(e, E);
|
||||
STEP_IF_COUNTER(E);
|
||||
#endif
|
||||
|
||||
step_events_completed++;
|
||||
if (step_events_completed >= current_block->step_event_count) break;
|
||||
}
|
||||
// Calculate new timer value
|
||||
unsigned short timer;
|
||||
unsigned short step_rate;
|
||||
unsigned short timer, step_rate;
|
||||
if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
|
||||
|
||||
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||
@ -811,16 +396,17 @@ ISR(TIMER1_COMPA_vect) {
|
||||
// If current block is finished, reset pointer
|
||||
if (step_events_completed >= current_block->step_event_count) {
|
||||
current_block = NULL;
|
||||
plan_discard_current_block();
|
||||
planner.discard_current_block();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
unsigned char old_OCR0A;
|
||||
// Timer interrupt for E. e_steps is set in the main routine;
|
||||
// Timer 0 is shared with millies
|
||||
ISR(TIMER0_COMPA_vect) {
|
||||
ISR(TIMER0_COMPA_vect) { stepper.advance_isr(); }
|
||||
|
||||
void Stepper::advance_isr() {
|
||||
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
|
||||
OCR0A = old_OCR0A;
|
||||
|
||||
@ -852,9 +438,10 @@ ISR(TIMER1_COMPA_vect) {
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // ADVANCE
|
||||
|
||||
void st_init() {
|
||||
void Stepper::init() {
|
||||
digipot_init(); //Initialize Digipot Motor Current
|
||||
microstep_init(); //Initialize Microstepping Pins
|
||||
|
||||
@ -944,70 +531,10 @@ void st_init() {
|
||||
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
|
||||
//endstops and pullups
|
||||
|
||||
#if HAS_X_MIN
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_XMIN)
|
||||
WRITE(X_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Y_MIN
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_YMIN)
|
||||
WRITE(Y_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_MIN
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
||||
WRITE(Z_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z2_MIN
|
||||
SET_INPUT(Z2_MIN_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
||||
WRITE(Z2_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_X_MAX
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_XMAX)
|
||||
WRITE(X_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Y_MAX
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_YMAX)
|
||||
WRITE(Y_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_MAX
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
||||
WRITE(Z_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z2_MAX
|
||||
SET_INPUT(Z2_MAX_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
||||
WRITE(Z2_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
|
||||
SET_INPUT(Z_MIN_PROBE_PIN);
|
||||
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
|
||||
WRITE(Z_MIN_PROBE_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
//
|
||||
// Init endstops and pullups here
|
||||
//
|
||||
endstops.init();
|
||||
|
||||
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
|
||||
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
|
||||
@ -1083,17 +610,17 @@ void st_init() {
|
||||
SBI(TIMSK0, OCIE0A);
|
||||
#endif //ADVANCE
|
||||
|
||||
enable_endstops(true); // Start with endstops active. After homing they can be disabled
|
||||
endstops.enable(true); // Start with endstops active. After homing they can be disabled
|
||||
sei();
|
||||
|
||||
set_stepper_direction(); // Init directions to out_bits = 0
|
||||
set_directions(); // Init directions to last_direction_bits = 0
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Block until all buffered steps are executed
|
||||
*/
|
||||
void st_synchronize() { while (blocks_queued()) idle(); }
|
||||
void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
|
||||
|
||||
/**
|
||||
* Set the stepper positions directly in steps
|
||||
@ -1101,10 +628,10 @@ void st_synchronize() { while (blocks_queued()) idle(); }
|
||||
* The input is based on the typical per-axis XYZ steps.
|
||||
* For CORE machines XYZ needs to be translated to ABC.
|
||||
*
|
||||
* This allows st_get_axis_position_mm to correctly
|
||||
* This allows get_axis_position_mm to correctly
|
||||
* derive the current XYZ position later on.
|
||||
*/
|
||||
void st_set_position(const long& x, const long& y, const long& z, const long& e) {
|
||||
void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
|
||||
CRITICAL_SECTION_START;
|
||||
|
||||
#if ENABLED(COREXY)
|
||||
@ -1129,7 +656,7 @@ void st_set_position(const long& x, const long& y, const long& z, const long& e)
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
void st_set_e_position(const long& e) {
|
||||
void Stepper::set_e_position(const long& e) {
|
||||
CRITICAL_SECTION_START;
|
||||
count_position[E_AXIS] = e;
|
||||
CRITICAL_SECTION_END;
|
||||
@ -1138,7 +665,7 @@ void st_set_e_position(const long& e) {
|
||||
/**
|
||||
* Get a stepper's position in steps.
|
||||
*/
|
||||
long st_get_position(AxisEnum axis) {
|
||||
long Stepper::position(AxisEnum axis) {
|
||||
CRITICAL_SECTION_START;
|
||||
long count_pos = count_position[axis];
|
||||
CRITICAL_SECTION_END;
|
||||
@ -1149,7 +676,7 @@ long st_get_position(AxisEnum axis) {
|
||||
* Get an axis position according to stepper position(s)
|
||||
* For CORE machines apply translation from ABC to XYZ.
|
||||
*/
|
||||
float st_get_axis_position_mm(AxisEnum axis) {
|
||||
float Stepper::get_axis_position_mm(AxisEnum axis) {
|
||||
float axis_steps;
|
||||
#if ENABLED(COREXY) | ENABLED(COREXZ)
|
||||
if (axis == X_AXIS || axis == CORE_AXIS_2) {
|
||||
@ -1162,31 +689,82 @@ float st_get_axis_position_mm(AxisEnum axis) {
|
||||
axis_steps = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
|
||||
}
|
||||
else
|
||||
axis_steps = st_get_position(axis);
|
||||
axis_steps = position(axis);
|
||||
#else
|
||||
axis_steps = st_get_position(axis);
|
||||
axis_steps = position(axis);
|
||||
#endif
|
||||
return axis_steps / axis_steps_per_unit[axis];
|
||||
return axis_steps / planner.axis_steps_per_unit[axis];
|
||||
}
|
||||
|
||||
void finishAndDisableSteppers() {
|
||||
st_synchronize();
|
||||
void Stepper::finish_and_disable() {
|
||||
synchronize();
|
||||
disable_all_steppers();
|
||||
}
|
||||
|
||||
void quickStop() {
|
||||
void Stepper::quick_stop() {
|
||||
cleaning_buffer_counter = 5000;
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
while (blocks_queued()) plan_discard_current_block();
|
||||
while (planner.blocks_queued()) planner.discard_current_block();
|
||||
current_block = NULL;
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
void Stepper::endstop_triggered(AxisEnum axis) {
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
|
||||
float axis_pos = count_position[axis];
|
||||
if (axis == A_AXIS)
|
||||
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2;
|
||||
else if (axis == CORE_AXIS_2)
|
||||
axis_pos = (count_position[A_AXIS] - axis_pos) / 2;
|
||||
endstops_trigsteps[axis] = axis_pos;
|
||||
|
||||
#else // !COREXY && !COREXZ
|
||||
|
||||
endstops_trigsteps[axis] = count_position[axis];
|
||||
|
||||
#endif // !COREXY && !COREXZ
|
||||
|
||||
kill_current_block();
|
||||
}
|
||||
|
||||
void Stepper::report_positions() {
|
||||
CRITICAL_SECTION_START;
|
||||
long xpos = count_position[X_AXIS],
|
||||
ypos = count_position[Y_AXIS],
|
||||
zpos = count_position[Z_AXIS];
|
||||
CRITICAL_SECTION_END;
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
||||
#endif
|
||||
SERIAL_PROTOCOL(xpos);
|
||||
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
#endif
|
||||
SERIAL_PROTOCOL(ypos);
|
||||
|
||||
#if ENABLED(COREXZ) || ENABLED(COREXZ)
|
||||
SERIAL_PROTOCOLPGM(" C:");
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
#endif
|
||||
SERIAL_PROTOCOL(zpos);
|
||||
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
#if ENABLED(BABYSTEPPING)
|
||||
|
||||
// MUST ONLY BE CALLED BY AN ISR,
|
||||
// No other ISR should ever interrupt this!
|
||||
void babystep(const uint8_t axis, const bool direction) {
|
||||
void Stepper::babystep(const uint8_t axis, const bool direction) {
|
||||
|
||||
#define _ENABLE(axis) enable_## axis()
|
||||
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
|
||||
@ -1256,10 +834,14 @@ void quickStop() {
|
||||
|
||||
#endif //BABYSTEPPING
|
||||
|
||||
/**
|
||||
* Software-controlled Stepper Motor Current
|
||||
*/
|
||||
|
||||
#if HAS_DIGIPOTSS
|
||||
|
||||
// From Arduino DigitalPotControl example
|
||||
void digitalPotWrite(int address, int value) {
|
||||
void Stepper::digitalPotWrite(int address, int value) {
|
||||
digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
|
||||
SPI.transfer(address); // send in the address and value via SPI:
|
||||
SPI.transfer(value);
|
||||
@ -1269,8 +851,7 @@ void quickStop() {
|
||||
|
||||
#endif //HAS_DIGIPOTSS
|
||||
|
||||
// Initialize Digipot Motor Current
|
||||
void digipot_init() {
|
||||
void Stepper::digipot_init() {
|
||||
#if HAS_DIGIPOTSS
|
||||
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
||||
|
||||
@ -1299,7 +880,7 @@ void digipot_init() {
|
||||
#endif
|
||||
}
|
||||
|
||||
void digipot_current(uint8_t driver, int current) {
|
||||
void Stepper::digipot_current(uint8_t driver, int current) {
|
||||
#if HAS_DIGIPOTSS
|
||||
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
|
||||
digitalPotWrite(digipot_ch[driver], current);
|
||||
@ -1322,7 +903,7 @@ void digipot_current(uint8_t driver, int current) {
|
||||
#endif
|
||||
}
|
||||
|
||||
void microstep_init() {
|
||||
void Stepper::microstep_init() {
|
||||
#if HAS_MICROSTEPS_E1
|
||||
pinMode(E1_MS1_PIN, OUTPUT);
|
||||
pinMode(E1_MS2_PIN, OUTPUT);
|
||||
@ -1343,7 +924,11 @@ void microstep_init() {
|
||||
#endif
|
||||
}
|
||||
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
||||
/**
|
||||
* Software-controlled Microstepping
|
||||
*/
|
||||
|
||||
void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
||||
if (ms1 >= 0) switch (driver) {
|
||||
case 0: digitalWrite(X_MS1_PIN, ms1); break;
|
||||
case 1: digitalWrite(Y_MS1_PIN, ms1); break;
|
||||
@ -1364,7 +949,7 @@ void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
||||
}
|
||||
}
|
||||
|
||||
void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
||||
void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
||||
switch (stepping_mode) {
|
||||
case 1: microstep_ms(driver, MICROSTEP1); break;
|
||||
case 2: microstep_ms(driver, MICROSTEP2); break;
|
||||
@ -1374,7 +959,7 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
||||
}
|
||||
}
|
||||
|
||||
void microstep_readings() {
|
||||
void Stepper::microstep_readings() {
|
||||
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
|
||||
SERIAL_PROTOCOLPGM("X: ");
|
||||
SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
|
||||
@ -1396,7 +981,7 @@ void microstep_readings() {
|
||||
}
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
void In_Homing_Process(bool state) { performing_homing = state; }
|
||||
void Lock_z_motor(bool state) { locked_z_motor = state; }
|
||||
void Lock_z2_motor(bool state) { locked_z2_motor = state; }
|
||||
void Stepper::set_homing_flag(bool state) { performing_homing = state; }
|
||||
void Stepper::set_z_lock(bool state) { locked_z_motor = state; }
|
||||
void Stepper::set_z2_lock(bool state) { locked_z2_motor = state; }
|
||||
#endif
|
||||
|
347
Marlin/stepper.h
347
Marlin/stepper.h
@ -21,90 +21,313 @@
|
||||
*/
|
||||
|
||||
/**
|
||||
stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
|
||||
Part of Grbl
|
||||
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
|
||||
* Part of Grbl
|
||||
*
|
||||
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
*
|
||||
* Grbl is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* Grbl is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef stepper_h
|
||||
#define stepper_h
|
||||
#ifndef STEPPER_H
|
||||
#define STEPPER_H
|
||||
|
||||
#include "planner.h"
|
||||
#include "speed_lookuptable.h"
|
||||
#include "stepper_indirection.h"
|
||||
#include "language.h"
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
extern bool abort_on_endstop_hit;
|
||||
#endif
|
||||
class Stepper;
|
||||
extern Stepper stepper;
|
||||
|
||||
// Initialize and start the stepper motor subsystem
|
||||
void st_init();
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 24 bit result
|
||||
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %A1, %A2 \n\t" \
|
||||
"add %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r0 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (charIn1), \
|
||||
"d" (intIn2) \
|
||||
: \
|
||||
"r26" \
|
||||
)
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize();
|
||||
class Stepper {
|
||||
|
||||
// Set current position in steps
|
||||
void st_set_position(const long& x, const long& y, const long& z, const long& e);
|
||||
void st_set_e_position(const long& e);
|
||||
public:
|
||||
|
||||
// Get current position in steps
|
||||
long st_get_position(AxisEnum axis);
|
||||
block_t* current_block = NULL; // A pointer to the block currently being traced
|
||||
|
||||
// Get current axis position in mm
|
||||
float st_get_axis_position_mm(AxisEnum axis);
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
bool abort_on_endstop_hit = false;
|
||||
#endif
|
||||
|
||||
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
||||
// to notify the subsystem that it is time to go to work.
|
||||
void st_wake_up();
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
bool performing_homing = false;
|
||||
#endif
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
long e_steps[4];
|
||||
#endif
|
||||
|
||||
void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
||||
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
|
||||
private:
|
||||
|
||||
void enable_endstops(bool check); // Enable/disable endstop checking
|
||||
unsigned char last_direction_bits = 0; // The next stepping-bits to be output
|
||||
unsigned int cleaning_buffer_counter = 0;
|
||||
|
||||
void enable_endstops_globally(bool check);
|
||||
void endstops_not_homing();
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
bool locked_z_motor = false,
|
||||
locked_z2_motor = false;
|
||||
#endif
|
||||
|
||||
void checkStepperErrors(); //Print errors detected by the stepper
|
||||
// Counter variables for the Bresenham line tracer
|
||||
long counter_X = 0, counter_Y = 0, counter_Z = 0, counter_E = 0;
|
||||
volatile unsigned long step_events_completed = 0; // The number of step events executed in the current block
|
||||
|
||||
void finishAndDisableSteppers();
|
||||
#if ENABLED(ADVANCE)
|
||||
unsigned char old_OCR0A;
|
||||
long advance_rate, advance, final_advance = 0;
|
||||
long old_advance = 0;
|
||||
#endif
|
||||
|
||||
extern block_t* current_block; // A pointer to the block currently being traced
|
||||
long acceleration_time, deceleration_time;
|
||||
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
unsigned short acc_step_rate; // needed for deceleration start point
|
||||
uint8_t step_loops;
|
||||
uint8_t step_loops_nominal;
|
||||
unsigned short OCR1A_nominal;
|
||||
|
||||
void quickStop();
|
||||
volatile long endstops_trigsteps[3];
|
||||
volatile long endstops_stepsTotal, endstops_stepsDone;
|
||||
|
||||
#if HAS_DIGIPOTSS
|
||||
#if HAS_MOTOR_CURRENT_PWM
|
||||
#ifndef PWM_MOTOR_CURRENT
|
||||
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
|
||||
#endif
|
||||
const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
|
||||
#endif
|
||||
|
||||
//
|
||||
// Positions of stepper motors, in step units
|
||||
//
|
||||
volatile long count_position[NUM_AXIS] = { 0 };
|
||||
|
||||
//
|
||||
// Current direction of stepper motors (+1 or -1)
|
||||
//
|
||||
volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
|
||||
public:
|
||||
|
||||
//
|
||||
// Constructor / initializer
|
||||
//
|
||||
Stepper() {};
|
||||
|
||||
//
|
||||
// Initialize stepper hardware
|
||||
//
|
||||
void init();
|
||||
|
||||
//
|
||||
// Interrupt Service Routines
|
||||
//
|
||||
|
||||
void isr();
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
void advance_isr();
|
||||
#endif
|
||||
|
||||
//
|
||||
// Block until all buffered steps are executed
|
||||
//
|
||||
void synchronize();
|
||||
|
||||
//
|
||||
// Set the current position in steps
|
||||
//
|
||||
void set_position(const long& x, const long& y, const long& z, const long& e);
|
||||
void set_e_position(const long& e);
|
||||
|
||||
//
|
||||
// Set direction bits for all steppers
|
||||
//
|
||||
void set_directions();
|
||||
|
||||
//
|
||||
// Get the position of a stepper, in steps
|
||||
//
|
||||
long position(AxisEnum axis);
|
||||
|
||||
//
|
||||
// Report the positions of the steppers, in steps
|
||||
//
|
||||
void report_positions();
|
||||
|
||||
//
|
||||
// Get the position (mm) of an axis based on stepper position(s)
|
||||
//
|
||||
float get_axis_position_mm(AxisEnum axis);
|
||||
|
||||
//
|
||||
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
||||
// to notify the subsystem that it is time to go to work.
|
||||
//
|
||||
void wake_up();
|
||||
|
||||
//
|
||||
// Wait for moves to finish and disable all steppers
|
||||
//
|
||||
void finish_and_disable();
|
||||
|
||||
//
|
||||
// Quickly stop all steppers and clear the blocks queue
|
||||
//
|
||||
void quick_stop();
|
||||
|
||||
//
|
||||
// The direction of a single motor
|
||||
//
|
||||
FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); }
|
||||
|
||||
#if HAS_DIGIPOTSS
|
||||
void digitalPotWrite(int address, int value);
|
||||
#endif
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
|
||||
void microstep_mode(uint8_t driver, uint8_t stepping);
|
||||
void digipot_init();
|
||||
void digipot_current(uint8_t driver, int current);
|
||||
void microstep_init();
|
||||
void microstep_readings();
|
||||
#endif
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
|
||||
void digipot_current(uint8_t driver, int current);
|
||||
void microstep_readings();
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
void In_Homing_Process(bool state);
|
||||
void Lock_z_motor(bool state);
|
||||
void Lock_z2_motor(bool state);
|
||||
#endif
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
void set_homing_flag(bool state);
|
||||
void set_z_lock(bool state);
|
||||
void set_z2_lock(bool state);
|
||||
#endif
|
||||
|
||||
#if ENABLED(BABYSTEPPING)
|
||||
#if ENABLED(BABYSTEPPING)
|
||||
void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif
|
||||
inline void kill_current_block() {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
|
||||
//
|
||||
// Handle a triggered endstop
|
||||
//
|
||||
void endstop_triggered(AxisEnum axis);
|
||||
|
||||
//
|
||||
// Triggered position of an axis in mm (not core-savvy)
|
||||
//
|
||||
FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
|
||||
return endstops_trigsteps[axis] / planner.axis_steps_per_unit[axis];
|
||||
}
|
||||
|
||||
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||
unsigned short timer;
|
||||
|
||||
NOMORE(step_rate, MAX_STEP_FREQUENCY);
|
||||
|
||||
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||
step_rate = (step_rate >> 2) & 0x3fff;
|
||||
step_loops = 4;
|
||||
}
|
||||
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
||||
step_rate = (step_rate >> 1) & 0x7fff;
|
||||
step_loops = 2;
|
||||
}
|
||||
else {
|
||||
step_loops = 1;
|
||||
}
|
||||
|
||||
NOLESS(step_rate, F_CPU / 500000);
|
||||
step_rate -= F_CPU / 500000; // Correct for minimal speed
|
||||
if (step_rate >= (8 * 256)) { // higher step rate
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
|
||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
|
||||
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
||||
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
||||
}
|
||||
else { // lower step rates
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
||||
table_address += ((step_rate) >> 1) & 0xfffc;
|
||||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
|
||||
}
|
||||
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
|
||||
return timer;
|
||||
}
|
||||
|
||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||
// block begins.
|
||||
FORCE_INLINE void trapezoid_generator_reset() {
|
||||
|
||||
static int8_t last_extruder = -1;
|
||||
|
||||
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
|
||||
last_direction_bits = current_block->direction_bits;
|
||||
last_extruder = current_block->active_extruder;
|
||||
set_directions();
|
||||
}
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
advance = current_block->initial_advance;
|
||||
final_advance = current_block->final_advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
#endif
|
||||
deceleration_time = 0;
|
||||
// step_rate to timer interval
|
||||
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
||||
// make a note of the number of step loops required at nominal speed
|
||||
step_loops_nominal = step_loops;
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
OCR1A = acceleration_time;
|
||||
|
||||
// SERIAL_ECHO_START;
|
||||
// SERIAL_ECHOPGM("advance :");
|
||||
// SERIAL_ECHO(current_block->advance/256.0);
|
||||
// SERIAL_ECHOPGM("advance rate :");
|
||||
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
||||
// SERIAL_ECHOPGM("initial advance :");
|
||||
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||
// SERIAL_ECHOPGM("final advance :");
|
||||
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||
}
|
||||
|
||||
private:
|
||||
void microstep_mode(uint8_t driver, uint8_t stepping);
|
||||
void digipot_init();
|
||||
void microstep_init();
|
||||
|
||||
};
|
||||
|
||||
#endif // STEPPER_H
|
@ -604,7 +604,7 @@ float get_pid_output(int e) {
|
||||
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
||||
cTerm[e] = 0;
|
||||
if (e == active_extruder) {
|
||||
long e_position = st_get_position(E_AXIS);
|
||||
long e_position = stepper.position(E_AXIS);
|
||||
if (e_position > last_position[e]) {
|
||||
lpq[lpq_ptr++] = e_position - last_position[e];
|
||||
last_position[e] = e_position;
|
||||
@ -613,7 +613,7 @@ float get_pid_output(int e) {
|
||||
lpq[lpq_ptr++] = 0;
|
||||
}
|
||||
if (lpq_ptr >= lpq_len) lpq_ptr = 0;
|
||||
cTerm[e] = (lpq[lpq_ptr] / axis_steps_per_unit[E_AXIS]) * PID_PARAM(Kc, e);
|
||||
cTerm[e] = (lpq[lpq_ptr] / planner.axis_steps_per_unit[E_AXIS]) * PID_PARAM(Kc, e);
|
||||
pid_output += cTerm[e];
|
||||
}
|
||||
#endif //PID_ADD_EXTRUSION_RATE
|
||||
|
@ -79,6 +79,10 @@ extern float current_temperature_bed;
|
||||
extern unsigned char soft_pwm_bed;
|
||||
#endif
|
||||
|
||||
#if ENABLED(FAN_SOFT_PWM)
|
||||
extern unsigned char fanSpeedSoftPwm[FAN_COUNT];
|
||||
#endif
|
||||
|
||||
#if ENABLED(PIDTEMP)
|
||||
|
||||
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
|
||||
@ -178,9 +182,9 @@ void checkExtruderAutoFans();
|
||||
|
||||
FORCE_INLINE void autotempShutdown() {
|
||||
#if ENABLED(AUTOTEMP)
|
||||
if (autotemp_enabled) {
|
||||
autotemp_enabled = false;
|
||||
if (degTargetHotend(active_extruder) > autotemp_min)
|
||||
if (planner.autotemp_enabled) {
|
||||
planner.autotemp_enabled = false;
|
||||
if (degTargetHotend(active_extruder) > planner.autotemp_min)
|
||||
setTargetHotend(0, active_extruder);
|
||||
}
|
||||
#endif
|
||||
|
@ -463,9 +463,9 @@ static void lcd_status_screen() {
|
||||
inline void line_to_current(AxisEnum axis) {
|
||||
#if ENABLED(DELTA)
|
||||
calculate_delta(current_position);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
|
||||
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
|
||||
#else
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
|
||||
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -476,7 +476,7 @@ inline void line_to_current(AxisEnum axis) {
|
||||
static void lcd_sdcard_resume() { card.startFileprint(); }
|
||||
|
||||
static void lcd_sdcard_stop() {
|
||||
quickStop();
|
||||
stepper.quick_stop();
|
||||
card.sdprinting = false;
|
||||
card.closefile();
|
||||
autotempShutdown();
|
||||
@ -495,7 +495,7 @@ inline void line_to_current(AxisEnum axis) {
|
||||
static void lcd_main_menu() {
|
||||
START_MENU();
|
||||
MENU_ITEM(back, MSG_WATCH);
|
||||
if (movesplanned() || IS_SD_PRINTING) {
|
||||
if (planner.movesplanned() || IS_SD_PRINTING) {
|
||||
MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
|
||||
}
|
||||
else {
|
||||
@ -911,7 +911,7 @@ void lcd_cooldown() {
|
||||
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
||||
line_to_current(Z_AXIS);
|
||||
#endif
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
static void _lcd_level_goto_next_point();
|
||||
@ -934,7 +934,7 @@ void lcd_cooldown() {
|
||||
ENCODER_DIRECTION_NORMAL();
|
||||
|
||||
// Encoder wheel adjusts the Z position
|
||||
if (encoderPosition && movesplanned() <= 3) {
|
||||
if (encoderPosition && planner.movesplanned() <= 3) {
|
||||
refresh_cmd_timeout();
|
||||
current_position[Z_AXIS] += float((int32_t)encoderPosition) * (MBL_Z_STEP);
|
||||
NOLESS(current_position[Z_AXIS], 0);
|
||||
@ -964,7 +964,7 @@ void lcd_cooldown() {
|
||||
#endif
|
||||
;
|
||||
line_to_current(Z_AXIS);
|
||||
st_synchronize();
|
||||
stepper.synchronize();
|
||||
|
||||
mbl.active = true;
|
||||
enqueue_and_echo_commands_P(PSTR("G28"));
|
||||
@ -1037,7 +1037,7 @@ void lcd_cooldown() {
|
||||
if (LCD_CLICKED) {
|
||||
_lcd_level_bed_position = 0;
|
||||
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
lcd_goto_menu(_lcd_level_goto_next_point, true);
|
||||
}
|
||||
}
|
||||
@ -1191,7 +1191,7 @@ float move_menu_scale;
|
||||
|
||||
static void _lcd_move(const char* name, AxisEnum axis, float min, float max) {
|
||||
ENCODER_DIRECTION_NORMAL();
|
||||
if (encoderPosition && movesplanned() <= 3) {
|
||||
if (encoderPosition && planner.movesplanned() <= 3) {
|
||||
refresh_cmd_timeout();
|
||||
current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale;
|
||||
if (min_software_endstops) NOLESS(current_position[axis], min);
|
||||
@ -1223,7 +1223,7 @@ static void lcd_move_e(
|
||||
unsigned short original_active_extruder = active_extruder;
|
||||
active_extruder = e;
|
||||
#endif
|
||||
if (encoderPosition && movesplanned() <= 3) {
|
||||
if (encoderPosition && planner.movesplanned() <= 3) {
|
||||
current_position[E_AXIS] += float((int32_t)encoderPosition) * move_menu_scale;
|
||||
line_to_current(E_AXIS);
|
||||
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
|
||||
@ -1511,10 +1511,10 @@ static void lcd_control_temperature_menu() {
|
||||
// Autotemp, Min, Max, Fact
|
||||
//
|
||||
#if ENABLED(AUTOTEMP) && (TEMP_SENSOR_0 != 0)
|
||||
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled);
|
||||
MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 15);
|
||||
MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 15);
|
||||
MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0);
|
||||
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &planner.autotemp_enabled);
|
||||
MENU_ITEM_EDIT(float3, MSG_MIN, &planner.autotemp_min, 0, HEATER_0_MAXTEMP - 15);
|
||||
MENU_ITEM_EDIT(float3, MSG_MAX, &planner.autotemp_max, 0, HEATER_0_MAXTEMP - 15);
|
||||
MENU_ITEM_EDIT(float32, MSG_FACTOR, &planner.autotemp_factor, 0.0, 1.0);
|
||||
#endif
|
||||
|
||||
//
|
||||
@ -1618,6 +1618,8 @@ static void lcd_control_temperature_preheat_abs_settings_menu() {
|
||||
END_MENU();
|
||||
}
|
||||
|
||||
static void _reset_acceleration_rates() { planner.reset_acceleration_rates(); }
|
||||
|
||||
/**
|
||||
*
|
||||
* "Control" > "Motion" submenu
|
||||
@ -1633,34 +1635,34 @@ static void lcd_control_motion_menu() {
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
|
||||
#endif
|
||||
MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 10, 99000);
|
||||
MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990);
|
||||
MENU_ITEM_EDIT(float5, MSG_ACC, &planner.acceleration, 10, 99000);
|
||||
MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &planner.max_xy_jerk, 1, 990);
|
||||
#if ENABLED(DELTA)
|
||||
MENU_ITEM_EDIT(float3, MSG_VZ_JERK, &max_z_jerk, 1, 990);
|
||||
MENU_ITEM_EDIT(float3, MSG_VZ_JERK, &planner.max_z_jerk, 1, 990);
|
||||
#else
|
||||
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &max_z_jerk, 0.1, 990);
|
||||
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_z_jerk, 0.1, 990);
|
||||
#endif
|
||||
MENU_ITEM_EDIT(float3, MSG_VE_JERK, &max_e_jerk, 1, 990);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &max_feedrate[X_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &max_feedrate[Y_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &max_feedrate[Z_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &max_feedrate[E_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMIN, &minimumfeedrate, 0, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &mintravelfeedrate, 0, 999);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &max_acceleration_units_per_sq_second[Z_AXIS], 10, 99000, reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &retract_acceleration, 100, 99000);
|
||||
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &travel_acceleration, 100, 99000);
|
||||
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &axis_steps_per_unit[X_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &axis_steps_per_unit[Y_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_e_jerk, 1, 990);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate[X_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate[Y_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate[Z_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_units_per_sq_second[Z_AXIS], 10, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000);
|
||||
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000);
|
||||
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_unit[X_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_unit[Y_AXIS], 5, 9999);
|
||||
#if ENABLED(DELTA)
|
||||
MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999);
|
||||
#else
|
||||
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999);
|
||||
#endif
|
||||
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_unit[E_AXIS], 5, 9999);
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &abort_on_endstop_hit);
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user