Only set up SPI pins as needed (#19372)

This commit is contained in:
Victor Oliveira 2020-09-14 19:16:19 -03:00 committed by Scott Lahteine
parent 8debad803c
commit d3f88a2482

View File

@ -41,8 +41,8 @@
* WRITE nor digitalWrite when the hardware SPI module within the LPC17xx is * WRITE nor digitalWrite when the hardware SPI module within the LPC17xx is
* active. If any of these pins are shared then the software SPI must be used. * active. If any of these pins are shared then the software SPI must be used.
* *
* A more sophisticated hardware SPI can be found at the following link. This * A more sophisticated hardware SPI can be found at the following link.
* implementation has not been fully debugged. * This implementation has not been fully debugged.
* https://github.com/MarlinFirmware/Marlin/tree/071c7a78f27078fd4aee9a3ef365fcf5e143531e * https://github.com/MarlinFirmware/Marlin/tree/071c7a78f27078fd4aee9a3ef365fcf5e143531e
*/ */
@ -170,34 +170,20 @@ static inline void waitSpiTxEnd(LPC_SSP_TypeDef *spi_d) {
while (SSP_GetStatus(spi_d, SSP_STAT_BUSY) == SET) { /* nada */ } // wait until BSY=0 while (SSP_GetStatus(spi_d, SSP_STAT_BUSY) == SET) { /* nada */ } // wait until BSY=0
} }
// Retain the pin init state of the SPI, to avoid init more than once,
// even if more instances of SPIClass exist
static bool spiInitialised[BOARD_NR_SPI] = { false };
SPIClass::SPIClass(uint8_t device) { SPIClass::SPIClass(uint8_t device) {
// Init things specific to each SPI device // Init things specific to each SPI device
// clock divider setup is a bit of hack, and needs to be improved at a later date. // clock divider setup is a bit of hack, and needs to be improved at a later date.
PINSEL_CFG_Type PinCfg; // data structure to hold init values
#if BOARD_NR_SPI >= 1 #if BOARD_NR_SPI >= 1
_settings[0].spi_d = LPC_SSP0; _settings[0].spi_d = LPC_SSP0;
_settings[0].dataMode = SPI_MODE0; _settings[0].dataMode = SPI_MODE0;
_settings[0].dataSize = DATA_SIZE_8BIT; _settings[0].dataSize = DATA_SIZE_8BIT;
_settings[0].clock = SPI_CLOCK_MAX; _settings[0].clock = SPI_CLOCK_MAX;
//_settings[0].clockDivider = determine_baud_rate(_settings[0].spi_d, _settings[0].clock); //_settings[0].clockDivider = determine_baud_rate(_settings[0].spi_d, _settings[0].clock);
PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI1_SCK_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI1_SCK_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(BOARD_SPI1_SCK_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI1_MISO_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI1_MISO_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_INPUT(BOARD_SPI1_MISO_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI1_MOSI_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI1_MOSI_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(BOARD_SPI1_MOSI_PIN);
#endif #endif
#if BOARD_NR_SPI >= 2 #if BOARD_NR_SPI >= 2
@ -206,33 +192,52 @@ SPIClass::SPIClass(uint8_t device) {
_settings[1].dataSize = DATA_SIZE_8BIT; _settings[1].dataSize = DATA_SIZE_8BIT;
_settings[1].clock = SPI_CLOCK_MAX; _settings[1].clock = SPI_CLOCK_MAX;
//_settings[1].clockDivider = determine_baud_rate(_settings[1].spi_d, _settings[1].clock); //_settings[1].clockDivider = determine_baud_rate(_settings[1].spi_d, _settings[1].clock);
PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI2_SCK_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI2_SCK_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(BOARD_SPI2_SCK_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI2_MISO_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI2_MISO_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_INPUT(BOARD_SPI2_MISO_PIN);
PinCfg.Pinnum = LPC176x::pin_bit(BOARD_SPI2_MOSI_PIN);
PinCfg.Portnum = LPC176x::pin_port(BOARD_SPI2_MOSI_PIN);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(BOARD_SPI2_MOSI_PIN);
#endif #endif
setModule(device); setModule(device);
/* Initialize GPDMA controller */ // Init the GPDMA controller
// TODO: call once in the constructor? or each time? // TODO: call once in the constructor? or each time?
GPDMA_Init(); GPDMA_Init();
} }
void SPIClass::begin() { void SPIClass::begin() {
// Init the SPI pins in the first begin call
if ((_currentSetting->spi_d == LPC_SSP0 && spiInitialised[0] == false) ||
(_currentSetting->spi_d == LPC_SSP1 && spiInitialised[1] == false)) {
pin_t sck, miso, mosi;
if (_currentSetting->spi_d == LPC_SSP0) {
sck = BOARD_SPI1_SCK_PIN;
miso = BOARD_SPI1_MISO_PIN;
mosi = BOARD_SPI1_MOSI_PIN;
spiInitialised[0] = true;
}
else if (_currentSetting->spi_d == LPC_SSP1) {
sck = BOARD_SPI2_SCK_PIN;
miso = BOARD_SPI2_MISO_PIN;
mosi = BOARD_SPI2_MOSI_PIN;
spiInitialised[1] = true;
}
PINSEL_CFG_Type PinCfg; // data structure to hold init values
PinCfg.Funcnum = 2;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
PinCfg.Pinnum = LPC176x::pin_bit(sck);
PinCfg.Portnum = LPC176x::pin_port(sck);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(sck);
PinCfg.Pinnum = LPC176x::pin_bit(miso);
PinCfg.Portnum = LPC176x::pin_port(miso);
PINSEL_ConfigPin(&PinCfg);
SET_INPUT(miso);
PinCfg.Pinnum = LPC176x::pin_bit(mosi);
PinCfg.Portnum = LPC176x::pin_port(mosi);
PINSEL_ConfigPin(&PinCfg);
SET_OUTPUT(mosi);
}
updateSettings(); updateSettings();
SSP_Cmd(_currentSetting->spi_d, ENABLE); // start SSP running SSP_Cmd(_currentSetting->spi_d, ENABLE); // start SSP running
} }
@ -246,7 +251,7 @@ void SPIClass::beginTransaction(const SPISettings &cfg) {
} }
uint8_t SPIClass::transfer(const uint16_t b) { uint8_t SPIClass::transfer(const uint16_t b) {
/* send and receive a single byte */ // Send and receive a single byte
SSP_ReceiveData(_currentSetting->spi_d); // read any previous data SSP_ReceiveData(_currentSetting->spi_d); // read any previous data
SSP_SendData(_currentSetting->spi_d, b); SSP_SendData(_currentSetting->spi_d, b);
waitSpiTxEnd(_currentSetting->spi_d); // wait for it to finish waitSpiTxEnd(_currentSetting->spi_d); // wait for it to finish
@ -254,8 +259,7 @@ uint8_t SPIClass::transfer(const uint16_t b) {
} }
uint16_t SPIClass::transfer16(const uint16_t data) { uint16_t SPIClass::transfer16(const uint16_t data) {
return (transfer((data >> 8) & 0xFF) << 8) return (transfer((data >> 8) & 0xFF) << 8) | (transfer(data & 0xFF) & 0xFF);
| (transfer(data & 0xFF) & 0xFF);
} }
void SPIClass::end() { void SPIClass::end() {
@ -294,23 +298,23 @@ void SPIClass::dmaSend(void *buf, uint16_t length, bool minc) {
// Enable dma on SPI // Enable dma on SPI
SSP_DMACmd(_currentSetting->spi_d, SSP_DMA_TX, ENABLE); SSP_DMACmd(_currentSetting->spi_d, SSP_DMA_TX, ENABLE);
// only increase memory if minc is true // Only increase memory if minc is true
GPDMACfg.MemoryIncrease = (minc ? GPDMA_DMACCxControl_SI : 0); GPDMACfg.MemoryIncrease = (minc ? GPDMA_DMACCxControl_SI : 0);
// Setup channel with given parameter // Setup channel with given parameter
GPDMA_Setup(&GPDMACfg); GPDMA_Setup(&GPDMACfg);
// enabled dma // Enable DMA
GPDMA_ChannelCmd(0, ENABLE); GPDMA_ChannelCmd(0, ENABLE);
// wait data transfer // Wait for data transfer
while (!GPDMA_IntGetStatus(GPDMA_STAT_RAWINTTC, 0) && !GPDMA_IntGetStatus(GPDMA_STAT_RAWINTERR, 0)) { } while (!GPDMA_IntGetStatus(GPDMA_STAT_RAWINTTC, 0) && !GPDMA_IntGetStatus(GPDMA_STAT_RAWINTERR, 0)) { }
// clear err and int // Clear err and int
GPDMA_ClearIntPending (GPDMA_STATCLR_INTTC, 0); GPDMA_ClearIntPending (GPDMA_STATCLR_INTTC, 0);
GPDMA_ClearIntPending (GPDMA_STATCLR_INTERR, 0); GPDMA_ClearIntPending (GPDMA_STATCLR_INTERR, 0);
// dma disable // Disable DMA
GPDMA_ChannelCmd(0, DISABLE); GPDMA_ChannelCmd(0, DISABLE);
waitSpiTxEnd(_currentSetting->spi_d); waitSpiTxEnd(_currentSetting->spi_d);