Drop Planner::position_float, use int types

This commit is contained in:
Scott Lahteine 2017-11-30 16:38:35 -06:00
parent ec6ca37ed3
commit dd3ce40826
2 changed files with 31 additions and 89 deletions

View File

@ -144,7 +144,7 @@ float Planner::min_feedrate_mm_s,
// private: // private:
long Planner::position[NUM_AXIS] = { 0 }; int32_t Planner::position[NUM_AXIS] = { 0 };
uint32_t Planner::cutoff_long; uint32_t Planner::cutoff_long;
@ -164,8 +164,7 @@ float Planner::previous_speed[NUM_AXIS],
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_k, // Initialized by settings.load() float Planner::extruder_advance_k, // Initialized by settings.load()
Planner::advance_ed_ratio, // Initialized by settings.load() Planner::advance_ed_ratio; // Initialized by settings.load()
Planner::position_float[NUM_AXIS] = { 0 };
#endif #endif
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
@ -181,9 +180,6 @@ Planner::Planner() { init(); }
void Planner::init() { void Planner::init() {
block_buffer_head = block_buffer_tail = 0; block_buffer_head = block_buffer_tail = 0;
ZERO(position); ZERO(position);
#if ENABLED(LIN_ADVANCE)
ZERO(position_float);
#endif
ZERO(previous_speed); ZERO(previous_speed);
previous_nominal_speed = 0.0; previous_nominal_speed = 0.0;
#if ABL_PLANAR #if ABL_PLANAR
@ -690,13 +686,9 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
} }
#endif #endif
#if ENABLED(LIN_ADVANCE) const int32_t da = target[X_AXIS] - position[X_AXIS],
const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS])); db = target[Y_AXIS] - position[Y_AXIS],
#endif dc = target[Z_AXIS] - position[Z_AXIS];
const long da = target[X_AXIS] - position[X_AXIS],
db = target[Y_AXIS] - position[Y_AXIS],
dc = target[Z_AXIS] - position[Z_AXIS];
/* /*
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s); SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
@ -721,19 +713,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
SERIAL_EOL(); SERIAL_EOL();
//*/ //*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied int32_t de = target[E_AXIS] - position[E_AXIS];
if (DEBUGGING(DRYRUN)) {
position[E_AXIS] = target[E_AXIS];
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
#endif
}
long de = target[E_AXIS] - position[E_AXIS];
#if ENABLED(LIN_ADVANCE)
float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (de) { if (de) {
@ -741,10 +721,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (thermalManager.tooColdToExtrude(extruder)) { if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
} }
@ -753,10 +729,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
} }
@ -1036,7 +1008,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif #endif
); );
} }
const float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate moves/second for this move. No divide by zero due to previous checks. // Calculate moves/second for this move. No divide by zero due to previous checks.
float inverse_mm_s = fr_mm_s * inverse_millimeters; float inverse_mm_s = fr_mm_s * inverse_millimeters;
@ -1360,31 +1332,28 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
previous_safe_speed = safe_speed; previous_safe_speed = safe_speed;
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
/**
// *
// Use LIN_ADVANCE for blocks if all these are true: * Use LIN_ADVANCE for blocks if all these are true:
// *
// esteps : We have E steps todo (a printing move) * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
// *
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime). * extruder_advance_k : There is an advance factor set.
// *
// extruder_advance_k : There is an advance factor set. * esteps != block->step_event_count : A problem occurs if the move before a retract is too small.
// * In that case, the retract and move will be executed together.
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small. * This leads to too many advance steps due to a huge e_acceleration.
// In that case, the retract and move will be executed together. * The math is good, but we must avoid retract moves with advance!
// This leads to too many advance steps due to a huge e_acceleration. * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
// The math is good, but we must avoid retract moves with advance! */
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves) block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
//
block->use_advance_lead = esteps
&& (block->steps[X_AXIS] || block->steps[Y_AXIS])
&& extruder_advance_k && extruder_advance_k
&& (uint32_t)esteps != block->step_event_count && (uint32_t)esteps != block->step_event_count
&& de_float > 0.0; && de > 0;
if (block->use_advance_lead) if (block->use_advance_lead)
block->abs_adv_steps_multiplier8 = LROUND( block->abs_adv_steps_multiplier8 = LROUND(
extruder_advance_k extruder_advance_k
* (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
* (block->nominal_speed / (float)block->nominal_rate) * (block->nominal_speed / (float)block->nominal_rate)
* axis_steps_per_mm[E_AXIS_N] * 256.0 * axis_steps_per_mm[E_AXIS_N] * 256.0
); );
@ -1398,12 +1367,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// Update the position (only when a move was queued) // Update the position (only when a move was queued)
COPY(position, target); COPY(position, target);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
recalculate(); recalculate();
@ -1425,16 +1388,10 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
#else #else
#define _EINDEX E_AXIS #define _EINDEX E_AXIS
#endif #endif
const long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]), const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]), nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]), nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]); ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
stepper.set_position(na, nb, nc, ne); stepper.set_position(na, nb, nc, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
ZERO(previous_speed); ZERO(previous_speed);
@ -1459,16 +1416,8 @@ void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
* Sync from the stepper positions. (e.g., after an interrupted move) * Sync from the stepper positions. (e.g., after an interrupted move)
*/ */
void Planner::sync_from_steppers() { void Planner::sync_from_steppers() {
LOOP_XYZE(i) { LOOP_XYZE(i)
position[i] = stepper.position((AxisEnum)i); position[i] = stepper.position((AxisEnum)i);
#if ENABLED(LIN_ADVANCE)
position_float[i] = position[i] * steps_to_mm[i
#if ENABLED(DISTINCT_E_FACTORS)
+ (i == E_AXIS ? active_extruder : 0)
#endif
];
#endif
}
} }
/** /**
@ -1482,9 +1431,6 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
const uint8_t axis_index = axis; const uint8_t axis_index = axis;
#endif #endif
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]); position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
#if ENABLED(LIN_ADVANCE)
position_float[axis] = v;
#endif
stepper.set_position(axis, v); stepper.set_position(axis, v);
previous_speed[axis] = 0.0; previous_speed[axis] = 0.0;
} }

View File

@ -186,7 +186,7 @@ class Planner {
* The current position of the tool in absolute steps * The current position of the tool in absolute steps
* Recalculated if any axis_steps_per_mm are changed by gcode * Recalculated if any axis_steps_per_mm are changed by gcode
*/ */
static long position[NUM_AXIS]; static int32_t position[NUM_AXIS];
/** /**
* Speed of previous path line segment * Speed of previous path line segment
@ -220,11 +220,7 @@ class Planner {
// Old direction bits. Used for speed calculations // Old direction bits. Used for speed calculations
static unsigned char old_direction_bits; static unsigned char old_direction_bits;
// Segment times (in µs). Used for speed calculations // Segment times (in µs). Used for speed calculations
static long axis_segment_time_us[2][3]; static uint32_t axis_segment_time_us[2][3];
#endif
#if ENABLED(LIN_ADVANCE)
static float position_float[NUM_AXIS];
#endif #endif
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)