Merge pull request #4859 from thinkyhead/rc_kinematic_and_scara

Kinematic and SCARA patches
This commit is contained in:
Scott Lahteine 2016-09-21 01:21:49 -05:00 committed by GitHub
commit e0e10e0e45
4 changed files with 328 additions and 165 deletions

View File

@ -109,6 +109,8 @@ script:
# ...with AUTO_BED_LEVELING_FEATURE, Z_MIN_PROBE_REPEATABILITY_TEST, & DEBUG_LEVELING_FEATURE # ...with AUTO_BED_LEVELING_FEATURE, Z_MIN_PROBE_REPEATABILITY_TEST, & DEBUG_LEVELING_FEATURE
# #
- opt_enable AUTO_BED_LEVELING_FEATURE Z_MIN_PROBE_REPEATABILITY_TEST DEBUG_LEVELING_FEATURE - opt_enable AUTO_BED_LEVELING_FEATURE Z_MIN_PROBE_REPEATABILITY_TEST DEBUG_LEVELING_FEATURE
- opt_set ABL_GRID_POINTS_X 16
- opt_set ABL_GRID_POINTS_Y 16
- build_marlin - build_marlin
# #
# Test a Sled Z Probe # Test a Sled Z Probe
@ -374,7 +376,7 @@ script:
# SCARA Config # SCARA Config
# #
- use_example_configs SCARA - use_example_configs SCARA
- opt_enable AUTO_BED_LEVELING_FEATURE FIX_MOUNTED_PROBE USE_ZMIN_PLUG - opt_enable AUTO_BED_LEVELING_FEATURE FIX_MOUNTED_PROBE USE_ZMIN_PLUG EEPROM_SETTINGS EEPROM_CHITCHAT ULTIMAKERCONTROLLER
- build_marlin - build_marlin
# #
# tvrrug Config need to check board type for sanguino atmega644p # tvrrug Config need to check board type for sanguino atmega644p

View File

@ -1350,7 +1350,10 @@ static void set_axis_is_at_home(AxisEnum axis) {
} }
#endif #endif
axis_known_position[axis] = axis_homed[axis] = true;
position_shift[axis] = 0; position_shift[axis] = 0;
update_software_endstops(axis);
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
@ -1396,7 +1399,6 @@ static void set_axis_is_at_home(AxisEnum axis) {
#endif #endif
{ {
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis); current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
update_software_endstops(axis);
if (axis == Z_AXIS) { if (axis == Z_AXIS) {
#if HAS_BED_PROBE && Z_HOME_DIR < 0 #if HAS_BED_PROBE && Z_HOME_DIR < 0
@ -1429,8 +1431,6 @@ static void set_axis_is_at_home(AxisEnum axis) {
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
} }
#endif #endif
axis_known_position[axis] = axis_homed[axis] = true;
} }
/** /**
@ -1446,38 +1446,38 @@ inline float get_homing_bump_feedrate(AxisEnum axis) {
} }
return homing_feedrate_mm_s[axis] / hbd; return homing_feedrate_mm_s[axis] / hbd;
} }
//
// line_to_current_position
// Move the planner to the current position from wherever it last moved
// (or from wherever it has been told it is located).
//
inline void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
}
inline void line_to_z(float zPosition) { #if !IS_KINEMATIC
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder); //
} // line_to_current_position
// Move the planner to the current position from wherever it last moved
// (or from wherever it has been told it is located).
//
inline void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
}
// //
// line_to_destination // line_to_destination
// Move the planner, not necessarily synced with current_position // Move the planner, not necessarily synced with current_position
// //
inline void line_to_destination(float fr_mm_s) { inline void line_to_destination(float fr_mm_s) {
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder); planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
} }
inline void line_to_destination() { line_to_destination(feedrate_mm_s); } inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
#endif // !IS_KINEMATIC
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
#if ENABLED(DELTA) #if IS_KINEMATIC
/** /**
* Calculate delta, start a line, and set current_position to destination * Calculate delta, start a line, and set current_position to destination
*/ */
void prepare_move_to_destination_raw() { void prepare_uninterpolated_move_to_destination() {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination); if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
#endif #endif
refresh_cmd_timeout(); refresh_cmd_timeout();
inverse_kinematics(destination); inverse_kinematics(destination);
@ -1513,7 +1513,7 @@ void do_blocking_move_to(const float &x, const float &y, const float &z, const f
destination[X_AXIS] = x; // move directly (uninterpolated) destination[X_AXIS] = x; // move directly (uninterpolated)
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
destination[Z_AXIS] = z; destination[Z_AXIS] = z;
prepare_move_to_destination_raw(); // set_current_to_destination prepare_uninterpolated_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
#endif #endif
@ -1521,7 +1521,7 @@ void do_blocking_move_to(const float &x, const float &y, const float &z, const f
} }
else { else {
destination[Z_AXIS] = delta_clip_start_height; destination[Z_AXIS] = delta_clip_start_height;
prepare_move_to_destination_raw(); // set_current_to_destination prepare_uninterpolated_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
#endif #endif
@ -1530,7 +1530,7 @@ void do_blocking_move_to(const float &x, const float &y, const float &z, const f
if (z > current_position[Z_AXIS]) { // raising? if (z > current_position[Z_AXIS]) { // raising?
destination[Z_AXIS] = z; destination[Z_AXIS] = z;
prepare_move_to_destination_raw(); // set_current_to_destination prepare_uninterpolated_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
#endif #endif
@ -1545,7 +1545,7 @@ void do_blocking_move_to(const float &x, const float &y, const float &z, const f
if (z < current_position[Z_AXIS]) { // lowering? if (z < current_position[Z_AXIS]) { // lowering?
destination[Z_AXIS] = z; destination[Z_AXIS] = z;
prepare_move_to_destination_raw(); // set_current_to_destination prepare_uninterpolated_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
#endif #endif
@ -1555,6 +1555,30 @@ void do_blocking_move_to(const float &x, const float &y, const float &z, const f
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to"); if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
#endif #endif
#elif IS_SCARA
set_destination_to_current();
// If Z needs to raise, do it before moving XY
if (current_position[Z_AXIS] < z) {
feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
destination[Z_AXIS] = z;
prepare_uninterpolated_move_to_destination();
}
feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
prepare_uninterpolated_move_to_destination();
// If Z needs to lower, do it after moving XY
if (current_position[Z_AXIS] > z) {
feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
destination[Z_AXIS] = z;
prepare_uninterpolated_move_to_destination();
}
#else #else
// If Z needs to raise, do it before moving XY // If Z needs to raise, do it before moving XY
@ -2230,10 +2254,15 @@ static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS) #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
static void homeaxis(AxisEnum axis) { static void homeaxis(AxisEnum axis) {
#define CAN_HOME(A) \
(axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return; #if IS_SCARA
// Only Z homing (with probe) is permitted
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
#else
#define CAN_HOME(A) \
(axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
@ -2296,10 +2325,16 @@ static void homeaxis(AxisEnum axis) {
} // Z_AXIS } // Z_AXIS
#endif #endif
// Delta has already moved all three towers up in G28 #if IS_SCARA
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes. set_axis_is_at_home(axis);
#if ENABLED(DELTA) SYNC_PLAN_POSITION_KINEMATIC();
#elif ENABLED(DELTA)
// Delta has already moved all three towers up in G28
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
// retrace by the amount specified in endstop_adj // retrace by the amount specified in endstop_adj
if (endstop_adj[axis] * Z_HOME_DIR < 0) { if (endstop_adj[axis] * Z_HOME_DIR < 0) {
@ -2492,16 +2527,26 @@ void unknown_command_error() {
bool position_is_reachable(float target[XYZ]) { bool position_is_reachable(float target[XYZ]) {
float dx = RAW_X_POSITION(target[X_AXIS]), float dx = RAW_X_POSITION(target[X_AXIS]),
dy = RAW_Y_POSITION(target[Y_AXIS]); dy = RAW_Y_POSITION(target[Y_AXIS]),
dz = RAW_Z_POSITION(target[Z_AXIS]);
#if ENABLED(DELTA) bool good;
return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS); #if IS_SCARA
#if MIDDLE_DEAD_ZONE_R > 0
const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
good = (R2 >= sq(float(MIDDLE_DEAD_ZONE_R))) && (R2 <= sq(L1 + L2));
#else
good = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
#endif
#elif ENABLED(DELTA)
good = HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
#else #else
float dz = RAW_Z_POSITION(target[Z_AXIS]); good = true;
return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
&& dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
&& dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
#endif #endif
return good && dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
&& dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
&& dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
} }
/************************************************** /**************************************************
@ -2511,7 +2556,11 @@ bool position_is_reachable(float target[XYZ]) {
/** /**
* G0, G1: Coordinated movement of X Y Z E axes * G0, G1: Coordinated movement of X Y Z E axes
*/ */
inline void gcode_G0_G1() { inline void gcode_G0_G1(
#if IS_SCARA
bool fast_move=false
#endif
) {
if (IsRunning()) { if (IsRunning()) {
gcode_get_destination(); // For X Y Z E F gcode_get_destination(); // For X Y Z E F
@ -2530,7 +2579,11 @@ inline void gcode_G0_G1() {
#endif //FWRETRACT #endif //FWRETRACT
prepare_move_to_destination(); #if IS_SCARA
fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
#else
prepare_move_to_destination();
#endif
} }
} }
@ -2779,8 +2832,7 @@ inline void gcode_G4() {
// Move all carriages together linearly until an endstop is hit. // Move all carriages together linearly until an endstop is hit.
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10); current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
feedrate_mm_s = homing_feedrate_mm_s[X_AXIS]; planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate_mm_s[X_AXIS], active_extruder);
line_to_current_position();
stepper.synchronize(); stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags endstops.hit_on_purpose(); // clear endstop hit flags
@ -3440,20 +3492,8 @@ inline void gcode_G28() {
// Re-orient the current position without leveling // Re-orient the current position without leveling
// based on where the steppers are positioned. // based on where the steppers are positioned.
// //
#if IS_KINEMATIC get_cartesian_from_steppers();
memcpy(current_position, cartes, sizeof(cartes));
// For DELTA/SCARA we need to apply forward kinematics.
// This returns raw positions and we remap to the space.
get_cartesian_from_steppers();
LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartes[i], i);
#else
// For cartesian/core the steppers are already mapped to
// the coordinate space by design.
LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
#endif // !DELTA
// Inform the planner about the new coordinates // Inform the planner about the new coordinates
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
@ -3527,7 +3567,8 @@ inline void gcode_G28() {
#if ENABLED(DELTA) #if ENABLED(DELTA)
// Avoid probing outside the round or hexagonal area of a delta printer // Avoid probing outside the round or hexagonal area of a delta printer
if (HYPOT2(xProbe, yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue; float pos[XYZ] = { xProbe + X_PROBE_OFFSET_FROM_EXTRUDER, yProbe + Y_PROBE_OFFSET_FROM_EXTRUDER, 0 };
if (!position_is_reachable(pos)) continue;
#endif #endif
measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
@ -3839,16 +3880,21 @@ inline void gcode_G92() {
LOOP_XYZE(i) { LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
float p = current_position[i], #if IS_SCARA
v = code_value_axis_units(i); current_position[i] = code_value_axis_units(i);
if (i != E_AXIS) didXYZ = true;
#else
float p = current_position[i],
v = code_value_axis_units(i);
current_position[i] = v; current_position[i] = v;
if (i != E_AXIS) { if (i != E_AXIS) {
position_shift[i] += v - p; // Offset the coordinate space didXYZ = true;
update_software_endstops((AxisEnum)i); position_shift[i] += v - p; // Offset the coordinate space
didXYZ = true; update_software_endstops((AxisEnum)i);
} }
#endif
} }
} }
if (didXYZ) if (didXYZ)
@ -4196,7 +4242,8 @@ inline void gcode_M42() {
return; return;
} }
#else #else
if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) { float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
if (!position_is_reachable(pos)) {
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius."); SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
return; return;
} }
@ -5111,20 +5158,8 @@ static void report_current_position() {
stepper.report_positions(); stepper.report_positions();
#if IS_SCARA #if IS_SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:"); SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
SERIAL_PROTOCOL(delta[A_AXIS]); SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOLLN(delta[B_AXIS]);
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[A_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOLLN(delta[B_AXIS] - delta[A_AXIS] - 90);
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[A_AXIS] / 90 * planner.axis_steps_per_mm[A_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOLLN((delta[B_AXIS] - delta[A_AXIS]) / 90 * planner.axis_steps_per_mm[A_AXIS]);
SERIAL_EOL; SERIAL_EOL;
#endif #endif
} }
@ -5346,9 +5381,9 @@ inline void gcode_M206() {
if (code_seen(axis_codes[i])) if (code_seen(axis_codes[i]))
set_home_offset((AxisEnum)i, code_value_axis_units(i)); set_home_offset((AxisEnum)i, code_value_axis_units(i));
#if IS_SCARA #if ENABLED(MORGAN_SCARA)
if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
#endif #endif
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
@ -5819,10 +5854,9 @@ inline void gcode_M303() {
bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) { bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
if (IsRunning()) { if (IsRunning()) {
//gcode_get_destination(); // For X Y Z E F
forward_kinematics_SCARA(delta_a, delta_b); forward_kinematics_SCARA(delta_a, delta_b);
destination[X_AXIS] = cartes[X_AXIS]; destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
destination[Y_AXIS] = cartes[Y_AXIS]; destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
destination[Z_AXIS] = current_position[Z_AXIS]; destination[Z_AXIS] = current_position[Z_AXIS];
prepare_move_to_destination(); prepare_move_to_destination();
return true; return true;
@ -6976,7 +7010,11 @@ void process_next_command() {
// G0, G1 // G0, G1
case 0: case 0:
case 1: case 1:
gcode_G0_G1(); #if IS_SCARA
gcode_G0_G1(codenum == 0);
#else
gcode_G0_G1();
#endif
break; break;
// G2, G3 // G2, G3
@ -7777,34 +7815,38 @@ void ok_to_send() {
* - Use a fast-inverse-sqrt function and add the reciprocal. * - Use a fast-inverse-sqrt function and add the reciprocal.
* (see above) * (see above)
*/ */
// Macro to obtain the Z position of an individual tower
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
delta_diagonal_rod_2_tower_##T - HYPOT2( \
delta_tower##T##_x - raw[X_AXIS], \
delta_tower##T##_y - raw[Y_AXIS] \
) \
)
#define DELTA_LOGICAL_IK() do { \
const float raw[XYZ] = { \
RAW_X_POSITION(logical[X_AXIS]), \
RAW_Y_POSITION(logical[Y_AXIS]), \
RAW_Z_POSITION(logical[Z_AXIS]) \
}; \
delta[A_AXIS] = DELTA_Z(1); \
delta[B_AXIS] = DELTA_Z(2); \
delta[C_AXIS] = DELTA_Z(3); \
} while(0)
#define DELTA_DEBUG() do { \
SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
} while(0)
void inverse_kinematics(const float logical[XYZ]) { void inverse_kinematics(const float logical[XYZ]) {
DELTA_LOGICAL_IK();
const float cartesian[XYZ] = { // DELTA_DEBUG();
RAW_X_POSITION(logical[X_AXIS]),
RAW_Y_POSITION(logical[Y_AXIS]),
RAW_Z_POSITION(logical[Z_AXIS])
};
// Macro to obtain the Z position of an individual tower
#define DELTA_Z(T) cartesian[Z_AXIS] + _SQRT( \
delta_diagonal_rod_2_tower_##T - HYPOT2( \
delta_tower##T##_x - cartesian[X_AXIS], \
delta_tower##T##_y - cartesian[Y_AXIS] \
) \
)
delta[A_AXIS] = DELTA_Z(1);
delta[B_AXIS] = DELTA_Z(2);
delta[C_AXIS] = DELTA_Z(3);
/*
SERIAL_ECHOPAIR("cartesian X:", cartesian[X_AXIS]);
SERIAL_ECHOPAIR(" Y:", cartesian[Y_AXIS]);
SERIAL_ECHOLNPAIR(" Z:", cartesian[Z_AXIS]);
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]);
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]);
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]);
//*/
} }
/** /**
@ -7922,11 +7964,16 @@ void get_cartesian_from_steppers() {
stepper.get_axis_position_mm(B_AXIS), stepper.get_axis_position_mm(B_AXIS),
stepper.get_axis_position_mm(C_AXIS) stepper.get_axis_position_mm(C_AXIS)
); );
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
#elif IS_SCARA #elif IS_SCARA
forward_kinematics_SCARA( forward_kinematics_SCARA(
stepper.get_axis_position_degrees(A_AXIS), stepper.get_axis_position_degrees(A_AXIS),
stepper.get_axis_position_degrees(B_AXIS) stepper.get_axis_position_degrees(B_AXIS)
); );
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
#else #else
cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
@ -8026,35 +8073,134 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
* small incremental moves for DELTA or SCARA. * small incremental moves for DELTA or SCARA.
*/ */
inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) { inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
// Get the top feedrate of the move in the XY plane
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
// If the move is only in Z don't split up the move.
// This shortcut cannot be used if planar bed leveling
// is in use, but is fine with mesh-based bed leveling
if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) {
inverse_kinematics(logical);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
return true;
}
// Get the distance moved in XYZ
float difference[NUM_AXIS]; float difference[NUM_AXIS];
LOOP_XYZE(i) difference[i] = logical[i] - current_position[i]; LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]); if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
if (UNEAR_ZERO(cartesian_mm)) return false; if (UNEAR_ZERO(cartesian_mm)) return false;
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
// Minimum number of seconds to move the given distance
float seconds = cartesian_mm / _feedrate_mm_s; float seconds = cartesian_mm / _feedrate_mm_s;
int steps = max(1, int(delta_segments_per_second * seconds));
float inv_steps = 1.0/steps; // The number of segments-per-second times the duration
// gives the number of segments we should produce
uint16_t segments = delta_segments_per_second * seconds;
#if IS_SCARA
NOMORE(segments, cartesian_mm * 2);
#endif
NOLESS(segments, 1);
// Each segment produces this much of the move
float inv_segments = 1.0 / segments,
segment_distance[XYZE] = {
difference[X_AXIS] * inv_segments,
difference[Y_AXIS] * inv_segments,
difference[Z_AXIS] * inv_segments,
difference[E_AXIS] * inv_segments
};
// SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOPAIR(" seconds=", seconds); // SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" steps=", steps); // SERIAL_ECHOLNPAIR(" segments=", segments);
for (int s = 1; s <= steps; s++) { // Send all the segments to the planner
float fraction = float(s) * inv_steps; #if ENABLED(DELTA) && ENABLED(USE_RAW_KINEMATICS)
LOOP_XYZE(i) #define DELTA_E raw[E_AXIS]
logical[i] = current_position[i] + difference[i] * fraction; #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) raw[i] += ADDEND;
#define DELTA_IK() do { \
delta[A_AXIS] = DELTA_Z(1); \
delta[B_AXIS] = DELTA_Z(2); \
delta[C_AXIS] = DELTA_Z(3); \
} while(0)
inverse_kinematics(logical); // Get the raw current position as starting point
float raw[ABC] = {
RAW_CURRENT_POSITION(X_AXIS),
RAW_CURRENT_POSITION(Y_AXIS),
RAW_CURRENT_POSITION(Z_AXIS)
};
//DEBUG_POS("prepare_kinematic_move_to", logical); #else
//DEBUG_POS("prepare_kinematic_move_to", delta);
#define DELTA_E logical[E_AXIS]
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
#if ENABLED(DELTA)
#define DELTA_IK() DELTA_LOGICAL_IK()
#else
#define DELTA_IK() inverse_kinematics(logical)
#endif
// Get the logical current position as starting point
LOOP_XYZE(i) logical[i] = current_position[i];
#endif
#if ENABLED(USE_DELTA_IK_INTERPOLATION)
// Get the starting delta for interpolation
if (segments >= 2) inverse_kinematics(logical);
for (uint16_t s = segments + 1; --s;) {
if (s > 1) {
// Save the previous delta for interpolation
float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
// Get the delta 2 segments ahead (rather than the next)
DELTA_NEXT(segment_distance[i] + segment_distance[i]);
DELTA_IK();
// Move to the interpolated delta position first
planner.buffer_line(
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
logical[E_AXIS], _feedrate_mm_s, active_extruder
);
// Do an extra decrement of the loop
--s;
}
else {
// Get the last segment delta (only when segments is odd)
DELTA_NEXT(segment_distance[i])
DELTA_IK();
}
// Move to the non-interpolated position
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_E, _feedrate_mm_s, active_extruder);
}
#else
// For non-interpolated delta calculate every segment
for (uint16_t s = segments + 1; --s;) {
DELTA_NEXT(segment_distance[i])
DELTA_IK();
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
}
#endif
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
}
return true; return true;
} }
@ -8371,25 +8517,26 @@ void prepare_move_to_destination() {
#endif // HAS_CONTROLLERFAN #endif // HAS_CONTROLLERFAN
#if IS_SCARA #if ENABLED(MORGAN_SCARA)
/**
* Morgan SCARA Forward Kinematics. Results in cartes[].
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void forward_kinematics_SCARA(const float &a, const float &b) { void forward_kinematics_SCARA(const float &a, const float &b) {
// Perform forward kinematics, and place results in cartes[]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float a_sin, a_cos, b_sin, b_cos; float a_sin = sin(RADIANS(a)) * L1,
a_cos = cos(RADIANS(a)) * L1,
a_sin = sin(RADIANS(a)) * L1; b_sin = sin(RADIANS(b)) * L2,
a_cos = cos(RADIANS(a)) * L1; b_cos = cos(RADIANS(b)) * L2;
b_sin = sin(RADIANS(b)) * L2;
b_cos = cos(RADIANS(b)) * L2;
cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
/* /*
SERIAL_ECHOPAIR("f_delta x=", a); SERIAL_ECHOPAIR("Angle a=", a);
SERIAL_ECHOPAIR(" y=", b); SERIAL_ECHOPAIR(" b=", b);
SERIAL_ECHOPAIR(" a_sin=", a_sin); SERIAL_ECHOPAIR(" a_sin=", a_sin);
SERIAL_ECHOPAIR(" a_cos=", a_cos); SERIAL_ECHOPAIR(" a_cos=", a_cos);
SERIAL_ECHOPAIR(" b_sin=", b_sin); SERIAL_ECHOPAIR(" b_sin=", b_sin);
@ -8399,29 +8546,38 @@ void prepare_move_to_destination() {
//*/ //*/
} }
/**
* Morgan SCARA Inverse Kinematics. Results in delta[].
*
* See http://forums.reprap.org/read.php?185,283327
*
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void inverse_kinematics(const float logical[XYZ]) { void inverse_kinematics(const float logical[XYZ]) {
// Inverse kinematics.
// Perform SCARA IK and place results in delta[].
// The maths and first version were done by QHARLEY.
// Integrated, tweaked by Joachim Cerny in June 2014.
static float C2, S2, SK1, SK2, THETA, PSI; static float C2, S2, SK1, SK2, THETA, PSI;
float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
#if (L1 == L2) if (L1 == L2)
C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1; C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
#else else
C2 = (HYPOT2(sx, sy) - L1_2 - L2_2) / 45000; C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
#endif
S2 = sqrt(1 - sq(C2)); S2 = sqrt(sq(C2) - 1);
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
SK1 = L1 + L2 * C2; SK1 = L1 + L2 * C2;
// Rotated Arm2 gives the distance from Arm1 to Arm2
SK2 = L2 * S2; SK2 = L2 * S2;
THETA = (atan2(sx, sy) - atan2(SK1, SK2)) * -1; // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
THETA = atan2(SK1, SK2) - atan2(sx, sy);
// Angle of Arm2
PSI = atan2(S2, C2); PSI = atan2(S2, C2);
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
@ -8440,7 +8596,7 @@ void prepare_move_to_destination() {
//*/ //*/
} }
#endif // IS_SCARA #endif // MORGAN_SCARA
#if ENABLED(TEMP_STAT_LEDS) #if ENABLED(TEMP_STAT_LEDS)

View File

@ -89,10 +89,11 @@
#if ENABLED(MORGAN_SCARA) || ENABLED(MAKERARM_SCARA) #if ENABLED(MORGAN_SCARA) || ENABLED(MAKERARM_SCARA)
//#define DEBUG_SCARA_KINEMATICS //#define DEBUG_SCARA_KINEMATICS
#define SCARA_SEGMENTS_PER_SECOND 200 // If movement is choppy try lowering this value // If movement is choppy try lowering this value
// Length of inner support arm #define SCARA_SEGMENTS_PER_SECOND 200
#define SCARA_LINKAGE_1 150 //mm Preprocessor cannot handle decimal point...
// Length of outer support arm Measure arm lengths precisely and enter // Length of inner and outer support arms. Measure arm lengths precisely.
#define SCARA_LINKAGE_1 150 //mm
#define SCARA_LINKAGE_2 150 //mm #define SCARA_LINKAGE_2 150 //mm
// SCARA tower offset (position of Tower relative to bed zero position) // SCARA tower offset (position of Tower relative to bed zero position)
@ -100,8 +101,12 @@
#define SCARA_OFFSET_X 100 //mm #define SCARA_OFFSET_X 100 //mm
#define SCARA_OFFSET_Y -56 //mm #define SCARA_OFFSET_Y -56 //mm
// Radius around the center where the arm cannot reach
#define MIDDLE_DEAD_ZONE 0 //mm
#define THETA_HOMING_OFFSET 0 //calculatated from Calibration Guide and command M360 / M114 see picture in http://reprap.harleystudio.co.za/?page_id=1073 #define THETA_HOMING_OFFSET 0 //calculatated from Calibration Guide and command M360 / M114 see picture in http://reprap.harleystudio.co.za/?page_id=1073
#define PSI_HOMING_OFFSET 0 //calculatated from Calibration Guide and command M364 / M114 see picture in http://reprap.harleystudio.co.za/?page_id=1073 #define PSI_HOMING_OFFSET 0 //calculatated from Calibration Guide and command M364 / M114 see picture in http://reprap.harleystudio.co.za/?page_id=1073
#endif #endif
//=========================================================================== //===========================================================================

View File

@ -91,11 +91,6 @@ class Stepper {
static bool performing_homing; static bool performing_homing;
#endif #endif
//
// Positions of stepper motors, in step units
//
static volatile long count_position[NUM_AXIS];
private: private:
static unsigned char last_direction_bits; // The next stepping-bits to be output static unsigned char last_direction_bits; // The next stepping-bits to be output
@ -143,6 +138,11 @@ class Stepper {
static const int motor_current_setting[3] = PWM_MOTOR_CURRENT; static const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
#endif #endif
//
// Positions of stepper motors, in step units
//
static volatile long count_position[NUM_AXIS];
// //
// Current direction of stepper motors (+1 or -1) // Current direction of stepper motors (+1 or -1)
// //