Merge pull request #8612 from thinkyhead/bf2_planner_parity
[2.0.x] Fix some planner bugs
This commit is contained in:
commit
e3948d8582
@ -105,11 +105,10 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
|
||||
|
||||
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
|
||||
|
||||
// Initialized by settings.load()
|
||||
float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
|
||||
Planner::filament_size[EXTRUDERS], // As a baseline for the multiplier, filament diameter
|
||||
Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
||||
Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
|
||||
Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor
|
||||
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
|
||||
|
||||
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
|
||||
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
|
||||
@ -129,12 +128,11 @@ float Planner::min_feedrate_mm_s,
|
||||
#if ABL_PLANAR
|
||||
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
float Planner::z_fade_height, // Initialized by settings.load()
|
||||
Planner::inverse_z_fade_height,
|
||||
Planner::last_fade_z;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
@ -146,7 +144,7 @@ float Planner::min_feedrate_mm_s,
|
||||
|
||||
// private:
|
||||
|
||||
long Planner::position[NUM_AXIS] = { 0 };
|
||||
int32_t Planner::position[NUM_AXIS] = { 0 };
|
||||
|
||||
uint32_t Planner::cutoff_long;
|
||||
|
||||
@ -166,8 +164,7 @@ float Planner::previous_speed[NUM_AXIS],
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
float Planner::extruder_advance_k, // Initialized by settings.load()
|
||||
Planner::advance_ed_ratio, // Initialized by settings.load()
|
||||
Planner::position_float[NUM_AXIS] = { 0 };
|
||||
Planner::advance_ed_ratio; // Initialized by settings.load()
|
||||
#endif
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
@ -183,9 +180,6 @@ Planner::Planner() { init(); }
|
||||
void Planner::init() {
|
||||
block_buffer_head = block_buffer_tail = 0;
|
||||
ZERO(position);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
ZERO(position_float);
|
||||
#endif
|
||||
ZERO(previous_speed);
|
||||
previous_nominal_speed = 0.0;
|
||||
#if ABL_PLANAR
|
||||
@ -571,30 +565,9 @@ void Planner::calculate_volumetric_multipliers() {
|
||||
*/
|
||||
void Planner::apply_leveling(float &rx, float &ry, float &rz) {
|
||||
|
||||
if (!planner.leveling_active) return;
|
||||
if (!leveling_active) return;
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
|
||||
if (!fade_scaling_factor) return;
|
||||
#else
|
||||
constexpr float fade_scaling_factor = 1.0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
rz += ubl.get_z_correction(rx, ry) * fade_scaling_factor;
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
rz += mbl.get_z(rx, ry
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
, fade_scaling_factor
|
||||
#endif
|
||||
);
|
||||
|
||||
#elif ABL_PLANAR
|
||||
|
||||
UNUSED(fade_scaling_factor);
|
||||
#if ABL_PLANAR
|
||||
|
||||
float dx = rx - (X_TILT_FULCRUM),
|
||||
dy = ry - (Y_TILT_FULCRUM);
|
||||
@ -604,80 +577,79 @@ void Planner::calculate_volumetric_multipliers() {
|
||||
rx = dx + X_TILT_FULCRUM;
|
||||
ry = dy + Y_TILT_FULCRUM;
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
#else
|
||||
|
||||
float tmp[XYZ] = { rx, ry, 0 };
|
||||
rz += bilinear_z_offset(tmp) * fade_scaling_factor;
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
|
||||
if (!fade_scaling_factor) return;
|
||||
#elif HAS_MESH
|
||||
constexpr float fade_scaling_factor = 1.0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
const float raw[XYZ] = { rx, ry, 0 };
|
||||
#endif
|
||||
|
||||
rz += (
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
ubl.get_z_correction(rx, ry) * fade_scaling_factor
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
mbl.get_z(rx, ry
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
, fade_scaling_factor
|
||||
#endif
|
||||
)
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
bilinear_z_offset(raw) * fade_scaling_factor
|
||||
#else
|
||||
0
|
||||
#endif
|
||||
);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
void Planner::unapply_leveling(float raw[XYZ]) {
|
||||
|
||||
if (!planner.leveling_active) return;
|
||||
if (!leveling_active) return;
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
if (z_fade_height && raw[Z_AXIS] >= z_fade_height) return;
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
const float z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]);
|
||||
float z_raw = raw[Z_AXIS] - z_correct;
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
|
||||
// for P=physical_z, L=raw_z, M=mesh_z, H=fade_height,
|
||||
// Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
|
||||
// then L=P-M(1-L/H)
|
||||
// so L=P-M+ML/H
|
||||
// so L-ML/H=P-M
|
||||
// so L(1-M/H)=P-M
|
||||
// so L=(P-M)/(1-M/H) for L<H
|
||||
|
||||
if (planner.z_fade_height) {
|
||||
if (z_raw >= planner.z_fade_height)
|
||||
z_raw = raw[Z_AXIS];
|
||||
else
|
||||
z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
|
||||
}
|
||||
|
||||
#endif // ENABLE_LEVELING_FADE_HEIGHT
|
||||
|
||||
raw[Z_AXIS] = z_raw;
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
|
||||
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS] - c)) / (z_fade_height - c);
|
||||
#else
|
||||
raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]);
|
||||
#endif
|
||||
|
||||
#elif ABL_PLANAR
|
||||
#if ABL_PLANAR
|
||||
|
||||
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
||||
|
||||
float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
|
||||
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM),
|
||||
dz = raw[Z_AXIS];
|
||||
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
|
||||
|
||||
apply_rotation_xyz(inverse, dx, dy, dz);
|
||||
apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
|
||||
|
||||
raw[X_AXIS] = dx + X_TILT_FULCRUM;
|
||||
raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
|
||||
raw[Z_AXIS] = dz;
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
#else
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
const float c = bilinear_z_offset(raw);
|
||||
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c);
|
||||
#else
|
||||
raw[Z_AXIS] -= bilinear_z_offset(raw);
|
||||
const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
|
||||
if (!fade_scaling_factor) return;
|
||||
#elif HAS_MESH
|
||||
constexpr float fade_scaling_factor = 1.0;
|
||||
#endif
|
||||
|
||||
raw[Z_AXIS] -= (
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
, fade_scaling_factor
|
||||
#endif
|
||||
)
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
bilinear_z_offset(raw) * fade_scaling_factor
|
||||
#else
|
||||
0
|
||||
#endif
|
||||
);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -714,11 +686,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
|
||||
#endif
|
||||
|
||||
const long da = target[X_AXIS] - position[X_AXIS],
|
||||
const int32_t da = target[X_AXIS] - position[X_AXIS],
|
||||
db = target[Y_AXIS] - position[Y_AXIS],
|
||||
dc = target[Z_AXIS] - position[Z_AXIS];
|
||||
|
||||
@ -745,19 +713,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
||||
SERIAL_EOL();
|
||||
//*/
|
||||
|
||||
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
||||
if (DEBUGGING(DRYRUN)) {
|
||||
position[E_AXIS] = target[E_AXIS];
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
}
|
||||
|
||||
long de = target[E_AXIS] - position[E_AXIS];
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
|
||||
#endif
|
||||
int32_t de = target[E_AXIS] - position[E_AXIS];
|
||||
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
||||
if (de) {
|
||||
@ -765,10 +721,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
||||
if (thermalManager.tooColdToExtrude(extruder)) {
|
||||
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
||||
de = 0; // no difference
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[E_AXIS] = e;
|
||||
de_float = 0;
|
||||
#endif
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
||||
}
|
||||
@ -777,10 +729,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
||||
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
|
||||
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
||||
de = 0; // no difference
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[E_AXIS] = e;
|
||||
de_float = 0;
|
||||
#endif
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
||||
}
|
||||
@ -1060,7 +1008,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
||||
#endif
|
||||
);
|
||||
}
|
||||
const float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
||||
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
||||
|
||||
// Calculate moves/second for this move. No divide by zero due to previous checks.
|
||||
float inverse_mm_s = fr_mm_s * inverse_millimeters;
|
||||
@ -1384,31 +1332,28 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
||||
previous_safe_speed = safe_speed;
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
|
||||
//
|
||||
// Use LIN_ADVANCE for blocks if all these are true:
|
||||
//
|
||||
// esteps : We have E steps todo (a printing move)
|
||||
//
|
||||
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
|
||||
//
|
||||
// extruder_advance_k : There is an advance factor set.
|
||||
//
|
||||
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
|
||||
// In that case, the retract and move will be executed together.
|
||||
// This leads to too many advance steps due to a huge e_acceleration.
|
||||
// The math is good, but we must avoid retract moves with advance!
|
||||
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||
//
|
||||
block->use_advance_lead = esteps
|
||||
&& (block->steps[X_AXIS] || block->steps[Y_AXIS])
|
||||
/**
|
||||
*
|
||||
* Use LIN_ADVANCE for blocks if all these are true:
|
||||
*
|
||||
* esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
|
||||
*
|
||||
* extruder_advance_k : There is an advance factor set.
|
||||
*
|
||||
* esteps != block->step_event_count : A problem occurs if the move before a retract is too small.
|
||||
* In that case, the retract and move will be executed together.
|
||||
* This leads to too many advance steps due to a huge e_acceleration.
|
||||
* The math is good, but we must avoid retract moves with advance!
|
||||
* de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||
*/
|
||||
block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
|
||||
&& extruder_advance_k
|
||||
&& (uint32_t)esteps != block->step_event_count
|
||||
&& de_float > 0.0;
|
||||
&& de > 0;
|
||||
if (block->use_advance_lead)
|
||||
block->abs_adv_steps_multiplier8 = LROUND(
|
||||
extruder_advance_k
|
||||
* (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
|
||||
* (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
|
||||
* (block->nominal_speed / (float)block->nominal_rate)
|
||||
* axis_steps_per_mm[E_AXIS_N] * 256.0
|
||||
);
|
||||
@ -1422,12 +1367,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
||||
|
||||
// Update the position (only when a move was queued)
|
||||
COPY(position, target);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[X_AXIS] = a;
|
||||
position_float[Y_AXIS] = b;
|
||||
position_float[Z_AXIS] = c;
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
|
||||
recalculate();
|
||||
|
||||
@ -1449,16 +1388,10 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
|
||||
#else
|
||||
#define _EINDEX E_AXIS
|
||||
#endif
|
||||
const long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
|
||||
const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
|
||||
nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
|
||||
nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
|
||||
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[X_AXIS] = a;
|
||||
position_float[Y_AXIS] = b;
|
||||
position_float[Z_AXIS] = c;
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
stepper.set_position(na, nb, nc, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
ZERO(previous_speed);
|
||||
@ -1483,16 +1416,8 @@ void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
|
||||
* Sync from the stepper positions. (e.g., after an interrupted move)
|
||||
*/
|
||||
void Planner::sync_from_steppers() {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_XYZE(i)
|
||||
position[i] = stepper.position((AxisEnum)i);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[i] = position[i] * steps_to_mm[i
|
||||
#if ENABLED(DISTINCT_E_FACTORS)
|
||||
+ (i == E_AXIS ? active_extruder : 0)
|
||||
#endif
|
||||
];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1506,9 +1431,6 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
|
||||
const uint8_t axis_index = axis;
|
||||
#endif
|
||||
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[axis] = v;
|
||||
#endif
|
||||
stepper.set_position(axis, v);
|
||||
previous_speed[axis] = 0.0;
|
||||
}
|
||||
|
@ -186,7 +186,7 @@ class Planner {
|
||||
* The current position of the tool in absolute steps
|
||||
* Recalculated if any axis_steps_per_mm are changed by gcode
|
||||
*/
|
||||
static long position[NUM_AXIS];
|
||||
static int32_t position[NUM_AXIS];
|
||||
|
||||
/**
|
||||
* Speed of previous path line segment
|
||||
@ -220,11 +220,7 @@ class Planner {
|
||||
// Old direction bits. Used for speed calculations
|
||||
static unsigned char old_direction_bits;
|
||||
// Segment times (in µs). Used for speed calculations
|
||||
static long axis_segment_time_us[2][3];
|
||||
#endif
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
static float position_float[NUM_AXIS];
|
||||
static uint32_t axis_segment_time_us[2][3];
|
||||
#endif
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
@ -342,12 +338,12 @@ class Planner {
|
||||
/**
|
||||
* Planner::_buffer_line
|
||||
*
|
||||
* Add a new direct linear movement to the buffer.
|
||||
* Add a new linear movement to the buffer in axis units.
|
||||
*
|
||||
* Leveling and kinematics should be applied ahead of this.
|
||||
* Leveling and kinematics should be applied ahead of calling this.
|
||||
*
|
||||
* a,b,c,e - target position in mm or degrees
|
||||
* fr_mm_s - (target) speed of the move (mm/s)
|
||||
* a,b,c,e - target positions in mm and/or degrees
|
||||
* fr_mm_s - (target) speed of the move
|
||||
* extruder - target extruder
|
||||
*/
|
||||
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
|
||||
@ -444,7 +440,7 @@ class Planner {
|
||||
if (blocks_queued()) {
|
||||
block_t* block = &block_buffer[block_buffer_tail];
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
block_buffer_runtime_us -= block->segment_time_us; //We can't be sure how long an active block will take, so don't count it.
|
||||
block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
|
||||
#endif
|
||||
SBI(block->flag, BLOCK_BIT_BUSY);
|
||||
return block;
|
||||
|
Loading…
Reference in New Issue
Block a user