Templatized serial classes (#11982)

This commit is contained in:
Eduardo José Tagle 2018-10-03 00:15:30 -03:00 committed by Scott Lahteine
parent ee53f7d813
commit f6f2246f59
6 changed files with 678 additions and 564 deletions

View File

@ -29,6 +29,7 @@
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer) * Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF) * Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
* Modified 10 June 2018 by Eduardo José Tagle (See #10991) * Modified 10 June 2018 by Eduardo José Tagle (See #10991)
* Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances
*/ */
#ifdef __AVR__ #ifdef __AVR__
@ -42,62 +43,26 @@
#include "MarlinSerial.h" #include "MarlinSerial.h"
#include "../../Marlin.h" #include "../../Marlin.h"
struct ring_buffer_r { template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0 };
unsigned char buffer[RX_BUFFER_SIZE]; template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
volatile ring_buffer_pos_t head, tail; template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
}; template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
#if TX_BUFFER_SIZE > 0 template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
struct ring_buffer_t { template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
unsigned char buffer[TX_BUFFER_SIZE]; template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
volatile uint8_t head, tail;
};
#endif
#if UART_PRESENT(SERIAL_PORT)
ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
#if TX_BUFFER_SIZE > 0
ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
#endif
static bool _written;
#endif
#if ENABLED(SERIAL_XON_XOFF)
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
uint8_t rx_dropped_bytes = 0;
#endif
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
uint8_t rx_buffer_overruns = 0;
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
uint8_t rx_framing_errors = 0;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
ring_buffer_pos_t rx_max_enqueued = 0;
#endif
// A SW memory barrier, to ensure GCC does not overoptimize loops // A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory"); #define sw_barrier() asm volatile("": : :"memory");
#if ENABLED(EMERGENCY_PARSER)
#include "../../feature/emergency_parser.h" #include "../../feature/emergency_parser.h"
#endif
// "Atomically" read the RX head index value without disabling interrupts: // "Atomically" read the RX head index value without disabling interrupts:
// This MUST be called with RX interrupts enabled, and CAN'T be called // This MUST be called with RX interrupts enabled, and CAN'T be called
// from the RX ISR itself! // from the RX ISR itself!
FORCE_INLINE ring_buffer_pos_t atomic_read_rx_head() { template<typename Cfg>
#if RX_BUFFER_SIZE > 256 FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_head() {
if (Cfg::RX_SIZE > 256) {
// Keep reading until 2 consecutive reads return the same value, // Keep reading until 2 consecutive reads return the same value,
// meaning there was no update in-between caused by an interrupt. // meaning there was no update in-between caused by an interrupt.
// This works because serial RX interrupts happen at a slower rate // This works because serial RX interrupts happen at a slower rate
@ -111,23 +76,25 @@
sw_barrier(); sw_barrier();
} while (vold != vnew); } while (vold != vnew);
return vnew; return vnew;
#else }
else {
// With an 8bit index, reads are always atomic. No need for special handling // With an 8bit index, reads are always atomic. No need for special handling
return rx_buffer.head; return rx_buffer.head;
#endif }
} }
#if RX_BUFFER_SIZE > 256 template<typename Cfg>
static volatile bool rx_tail_value_not_stable = false; volatile bool MarlinSerial<Cfg>::rx_tail_value_not_stable = false;
static volatile uint16_t rx_tail_value_backup = 0; template<typename Cfg>
#endif volatile uint16_t MarlinSerial<Cfg>::rx_tail_value_backup = 0;
// Set RX tail index, taking into account the RX ISR could interrupt // Set RX tail index, taking into account the RX ISR could interrupt
// the write to this variable in the middle - So a backup strategy // the write to this variable in the middle - So a backup strategy
// is used to ensure reads of the correct values. // is used to ensure reads of the correct values.
// -Must NOT be called from the RX ISR - // -Must NOT be called from the RX ISR -
FORCE_INLINE void atomic_set_rx_tail(ring_buffer_pos_t value) { template<typename Cfg>
#if RX_BUFFER_SIZE > 256 FORCE_INLINE void MarlinSerial<Cfg>::atomic_set_rx_tail(typename MarlinSerial<Cfg>::ring_buffer_pos_t value) {
if (Cfg::RX_SIZE > 256) {
// Store the new value in the backup // Store the new value in the backup
rx_tail_value_backup = value; rx_tail_value_backup = value;
sw_barrier(); sw_barrier();
@ -140,29 +107,29 @@
// Signal the new value is completely stored into the value // Signal the new value is completely stored into the value
rx_tail_value_not_stable = false; rx_tail_value_not_stable = false;
sw_barrier(); sw_barrier();
#else }
else
rx_buffer.tail = value; rx_buffer.tail = value;
#endif
} }
// Get the RX tail index, taking into account the read could be // Get the RX tail index, taking into account the read could be
// interrupting in the middle of the update of that index value // interrupting in the middle of the update of that index value
// -Called from the RX ISR - // -Called from the RX ISR -
FORCE_INLINE ring_buffer_pos_t atomic_read_rx_tail() { template<typename Cfg>
#if RX_BUFFER_SIZE > 256 FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_tail() {
if (Cfg::RX_SIZE > 256) {
// If the true index is being modified, return the backup value // If the true index is being modified, return the backup value
if (rx_tail_value_not_stable) return rx_tail_value_backup; if (rx_tail_value_not_stable) return rx_tail_value_backup;
#endif }
// The true index is stable, return it // The true index is stable, return it
return rx_buffer.tail; return rx_buffer.tail;
} }
// (called with RX interrupts disabled) // (called with RX interrupts disabled)
FORCE_INLINE void store_rxd_char() { template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
#if ENABLED(EMERGENCY_PARSER)
static EmergencyParser::State emergency_state; // = EP_RESET static EmergencyParser::State emergency_state; // = EP_RESET
#endif
// Get the tail - Nothing can alter its value while this ISR is executing, but there's // Get the tail - Nothing can alter its value while this ISR is executing, but there's
// a chance that this ISR interrupted the main process while it was updating the index. // a chance that this ISR interrupted the main process while it was updating the index.
@ -173,27 +140,17 @@
ring_buffer_pos_t h = rx_buffer.head; ring_buffer_pos_t h = rx_buffer.head;
// Get the next element // Get the next element
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// This must read the M_UCSRxA register before reading the received byte to detect error causes // This must read the R_UCSRA register before reading the received byte to detect error causes
#if ENABLED(SERIAL_STATS_DROPPED_RX) if (Cfg::DROPPED_RX && B_DOR && !++rx_dropped_bytes) --rx_dropped_bytes;
if (TEST(M_UCSRxA, M_DORx) && !++rx_dropped_bytes) --rx_dropped_bytes; if (Cfg::RX_OVERRUNS && B_DOR && !++rx_buffer_overruns) --rx_buffer_overruns;
#endif if (Cfg::RX_FRAMING_ERRORS && B_FE && !++rx_framing_errors) --rx_framing_errors;
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
if (TEST(M_UCSRxA, M_DORx) && !++rx_buffer_overruns) --rx_buffer_overruns;
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
if (TEST(M_UCSRxA, M_FEx) && !++rx_framing_errors) --rx_framing_errors;
#endif
// Read the character from the USART // Read the character from the USART
uint8_t c = M_UDRx; uint8_t c = R_UDR;
#if ENABLED(EMERGENCY_PARSER) if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
emergency_parser.update(emergency_state, c);
#endif
// If the character is to be stored at the index just before the tail // If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the RX FIFO is // (such that the head would advance to the current tail), the RX FIFO is
@ -202,29 +159,28 @@
rx_buffer.buffer[h] = c; rx_buffer.buffer[h] = c;
h = i; h = i;
} }
#if ENABLED(SERIAL_STATS_DROPPED_RX) else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
else if (!++rx_dropped_bytes) --rx_dropped_bytes; --rx_dropped_bytes;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) if (Cfg::MAX_RX_QUEUED) {
// Calculate count of bytes stored into the RX buffer // Calculate count of bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Keep track of the maximum count of enqueued bytes // Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count); NOLESS(rx_max_enqueued, rx_count);
#endif }
#if ENABLED(SERIAL_XON_XOFF) if (Cfg::XONOFF) {
// If the last char that was sent was an XON // If the last char that was sent was an XON
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// Bytes stored into the RX buffer // Bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// If over 12.5% of RX buffer capacity, send XOFF before running out of // If over 12.5% of RX buffer capacity, send XOFF before running out of
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
// and stop sending bytes. This translates to 13mS propagation time. // and stop sending bytes. This translates to 13mS propagation time.
if (rx_count >= (RX_BUFFER_SIZE) / 8) { if (rx_count >= (Cfg::RX_SIZE) / 8) {
// At this point, definitely no TX interrupt was executing, since the TX ISR can't be preempted. // At this point, definitely no TX interrupt was executing, since the TX ISR can't be preempted.
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
@ -238,19 +194,17 @@
// Wait until the TX register becomes empty and send it - Here there could be a problem // Wait until the TX register becomes empty and send it - Here there could be a problem
// - While waiting for the TX register to empty, the RX register could receive a new // - While waiting for the TX register to empty, the RX register could receive a new
// character. This must also handle that situation! // character. This must also handle that situation!
while (!TEST(M_UCSRxA, M_UDREx)) { while (!B_UDRE) {
if (TEST(M_UCSRxA,M_RXCx)) { if (B_RXC) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it! // A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART // Read the character from the USART
c = M_UDRx; c = R_UDR;
#if ENABLED(EMERGENCY_PARSER) if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
emergency_parser.update(emergency_state, c);
#endif
// If the character is to be stored at the index just before the tail // If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is // (such that the head would advance to the current tail), the FIFO is
@ -259,19 +213,18 @@
rx_buffer.buffer[h] = c; rx_buffer.buffer[h] = c;
h = i; h = i;
} }
#if ENABLED(SERIAL_STATS_DROPPED_RX) else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
else if (!++rx_dropped_bytes) --rx_dropped_bytes; --rx_dropped_bytes;
#endif
} }
sw_barrier(); sw_barrier();
} }
M_UDRx = XOFF_CHAR; R_UDR = XOFF_CHAR;
// Clear the TXC bit -- "can be cleared by writing a one to its bit // Clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes // location". This makes sure flush() won't return until the bytes
// actually got written // actually got written
SBI(M_UCSRxA, M_TXCx); B_TXC = 1;
// At this point there could be a race condition between the write() function // At this point there could be a race condition between the write() function
// and this sending of the XOFF char. This interrupt could happen between the // and this sending of the XOFF char. This interrupt could happen between the
@ -280,19 +233,18 @@
// sure the write() function will succeed is to wait for the XOFF char to be // sure the write() function will succeed is to wait for the XOFF char to be
// completely sent. Since an extra character could be received during the wait // completely sent. Since an extra character could be received during the wait
// it must also be handled! // it must also be handled!
while (!TEST(M_UCSRxA, M_UDREx)) { while (!B_UDRE) {
if (TEST(M_UCSRxA,M_RXCx)) { if (B_RXC) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it! // A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART // Read the character from the USART
c = M_UDRx; c = R_UDR;
#if ENABLED(EMERGENCY_PARSER) if (Cfg::EMERGENCYPARSER)
emergency_parser.update(emergency_state, c); emergency_parser.update(emergency_state, c);
#endif
// If the character is to be stored at the index just before the tail // If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is // (such that the head would advance to the current tail), the FIFO is
@ -301,9 +253,8 @@
rx_buffer.buffer[h] = c; rx_buffer.buffer[h] = c;
h = i; h = i;
} }
#if ENABLED(SERIAL_STATS_DROPPED_RX) else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
else if (!++rx_dropped_bytes) --rx_dropped_bytes; --rx_dropped_bytes;
#endif
} }
sw_barrier(); sw_barrier();
} }
@ -312,78 +263,68 @@
// have any issues writing to the UART TX register if it needs to! // have any issues writing to the UART TX register if it needs to!
} }
} }
#endif // SERIAL_XON_XOFF }
// Store the new head value - The main loop will retry until the value is stable // Store the new head value - The main loop will retry until the value is stable
rx_buffer.head = h; rx_buffer.head = h;
} }
#if TX_BUFFER_SIZE > 0
// (called with TX irqs disabled) // (called with TX irqs disabled)
FORCE_INLINE void _tx_udr_empty_irq(void) { template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::_tx_udr_empty_irq(void) {
if (Cfg::TX_SIZE > 0) {
// Read positions // Read positions
uint8_t t = tx_buffer.tail; uint8_t t = tx_buffer.tail;
const uint8_t h = tx_buffer.head; const uint8_t h = tx_buffer.head;
#if ENABLED(SERIAL_XON_XOFF) if (Cfg::XONOFF) {
// If an XON char is pending to be sent, do it now // If an XON char is pending to be sent, do it now
if (xon_xoff_state == XON_CHAR) { if (xon_xoff_state == XON_CHAR) {
// Send the character // Send the character
M_UDRx = XON_CHAR; R_UDR = XON_CHAR;
// clear the TXC bit -- "can be cleared by writing a one to its bit // clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes // location". This makes sure flush() won't return until the bytes
// actually got written // actually got written
SBI(M_UCSRxA, M_TXCx); B_TXC = 1;
// Remember we sent it. // Remember we sent it.
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
// If nothing else to transmit, just disable TX interrupts. // If nothing else to transmit, just disable TX interrupts.
if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
return; return;
} }
#endif }
// If nothing to transmit, just disable TX interrupts. This could // If nothing to transmit, just disable TX interrupts. This could
// happen as the result of the non atomicity of the disabling of RX // happen as the result of the non atomicity of the disabling of RX
// interrupts that could end reenabling TX interrupts as a side effect. // interrupts that could end reenabling TX interrupts as a side effect.
if (h == t) { if (h == t) {
CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
return; return;
} }
// There is something to TX, Send the next byte // There is something to TX, Send the next byte
const uint8_t c = tx_buffer.buffer[t]; const uint8_t c = tx_buffer.buffer[t];
t = (t + 1) & (TX_BUFFER_SIZE - 1); t = (t + 1) & (Cfg::TX_SIZE - 1);
M_UDRx = c; R_UDR = c;
tx_buffer.tail = t; tx_buffer.tail = t;
// Clear the TXC bit (by writing a one to its bit location). // Clear the TXC bit (by writing a one to its bit location).
// Ensures flush() won't return until the bytes are actually written/ // Ensures flush() won't return until the bytes are actually written/
SBI(M_UCSRxA, M_TXCx); B_TXC = 1;
// Disable interrupts if there is nothing to transmit following this byte // Disable interrupts if there is nothing to transmit following this byte
if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed) if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
}
} }
#ifdef M_USARTx_UDRE_vect
ISR(M_USARTx_UDRE_vect) { _tx_udr_empty_irq(); }
#endif
#endif // TX_BUFFER_SIZE
#ifdef M_USARTx_RX_vect
ISR(M_USARTx_RX_vect) { store_rxd_char(); }
#endif
// Public Methods // Public Methods
template<typename Cfg>
void MarlinSerial::begin(const long baud) { void MarlinSerial<Cfg>::begin(const long baud) {
uint16_t baud_setting; uint16_t baud_setting;
bool useU2X = true; bool useU2X = true;
@ -394,41 +335,41 @@
if (baud == 57600) useU2X = false; if (baud == 57600) useU2X = false;
#endif #endif
R_UCSRA = 0;
if (useU2X) { if (useU2X) {
M_UCSRxA = _BV(M_U2Xx); B_U2X = 1;
baud_setting = (F_CPU / 4 / baud - 1) / 2; baud_setting = (F_CPU / 4 / baud - 1) / 2;
} }
else { else
M_UCSRxA = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2; baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register) // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
M_UBRRxH = baud_setting >> 8; R_UBRRH = baud_setting >> 8;
M_UBRRxL = baud_setting; R_UBRRL = baud_setting;
SBI(M_UCSRxB, M_RXENx); B_RXEN = 1;
SBI(M_UCSRxB, M_TXENx); B_TXEN = 1;
SBI(M_UCSRxB, M_RXCIEx); B_RXCIE = 1;
#if TX_BUFFER_SIZE > 0 if (Cfg::TX_SIZE > 0) B_UDRIE = 0;
CBI(M_UCSRxB, M_UDRIEx);
#endif
_written = false; _written = false;
} }
void MarlinSerial::end() { template<typename Cfg>
CBI(M_UCSRxB, M_RXENx); void MarlinSerial<Cfg>::end() {
CBI(M_UCSRxB, M_TXENx); B_RXEN = 0;
CBI(M_UCSRxB, M_RXCIEx); B_TXEN = 0;
CBI(M_UCSRxB, M_UDRIEx); B_RXCIE = 0;
B_UDRIE = 0;
} }
int MarlinSerial::peek(void) { template<typename Cfg>
int MarlinSerial<Cfg>::peek(void) {
const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail; const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
return h == t ? -1 : rx_buffer.buffer[t]; return h == t ? -1 : rx_buffer.buffer[t];
} }
int MarlinSerial::read(void) { template<typename Cfg>
int MarlinSerial<Cfg>::read(void) {
const ring_buffer_pos_t h = atomic_read_rx_head(); const ring_buffer_pos_t h = atomic_read_rx_head();
// Read the tail. Main thread owns it, so it is safe to directly read it // Read the tail. Main thread owns it, so it is safe to directly read it
@ -439,42 +380,45 @@
// Get the next char // Get the next char
const int v = rx_buffer.buffer[t]; const int v = rx_buffer.buffer[t];
t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
// Advance tail - Making sure the RX ISR will always get an stable value, even // Advance tail - Making sure the RX ISR will always get an stable value, even
// if it interrupts the writing of the value of that variable in the middle. // if it interrupts the writing of the value of that variable in the middle.
atomic_set_rx_tail(t); atomic_set_rx_tail(t);
#if ENABLED(SERIAL_XON_XOFF) if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent... // If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer // Get count of bytes in the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
if (rx_count < (RX_BUFFER_SIZE) / 10) { if (rx_count < (Cfg::RX_SIZE) / 10) {
#if TX_BUFFER_SIZE > 0 if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent. // Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR; xon_xoff_state = XON_CHAR;
// Enable TX ISR. Non atomic, but it will eventually enable them // Enable TX ISR. Non atomic, but it will eventually enable them
SBI(M_UCSRxB, M_UDRIEx); B_UDRIE = 1;
#else }
else {
// If not using TX interrupts, we must send the XON char now // If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); while (!B_UDRE) sw_barrier();
M_UDRx = XON_CHAR; R_UDR = XON_CHAR;
#endif }
}
} }
} }
#endif
return v; return v;
} }
ring_buffer_pos_t MarlinSerial::available(void) { template<typename Cfg>
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available(void) {
const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail; const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
} }
void MarlinSerial::flush(void) { template<typename Cfg>
void MarlinSerial<Cfg>::flush(void) {
// Set the tail to the head: // Set the tail to the head:
// - Read the RX head index in a safe way. (See atomic_read_rx_head.) // - Read the RX head index in a safe way. (See atomic_read_rx_head.)
@ -482,26 +426,36 @@
// if it interrupts the writing of the value of that variable in the middle. // if it interrupts the writing of the value of that variable in the middle.
atomic_set_rx_tail(atomic_read_rx_head()); atomic_set_rx_tail(atomic_read_rx_head());
#if ENABLED(SERIAL_XON_XOFF) if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent... // If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
#if TX_BUFFER_SIZE > 0 if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent. // Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR; xon_xoff_state = XON_CHAR;
// Enable TX ISR. Non atomic, but it will eventually enable it. // Enable TX ISR. Non atomic, but it will eventually enable it.
SBI(M_UCSRxB, M_UDRIEx); B_UDRIE = 1;
#else }
else {
// If not using TX interrupts, we must send the XON char now // If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier(); while (!B_UDRE) sw_barrier();
M_UDRx = XON_CHAR; R_UDR = XON_CHAR;
#endif }
}
} }
#endif
} }
#if TX_BUFFER_SIZE > 0 template<typename Cfg>
void MarlinSerial::write(const uint8_t c) { void MarlinSerial<Cfg>::write(const uint8_t c) {
if (Cfg::TX_SIZE == 0) {
_written = true;
while (!B_UDRE) sw_barrier();
R_UDR = c;
}
else {
_written = true; _written = true;
// If the TX interrupts are disabled and the data register // If the TX interrupts are disabled and the data register
@ -511,17 +465,17 @@
// interrupt overhead becomes a slowdown. // interrupt overhead becomes a slowdown.
// Yes, there is a race condition between the sending of the // Yes, there is a race condition between the sending of the
// XOFF char at the RX ISR, but it is properly handled there // XOFF char at the RX ISR, but it is properly handled there
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) { if (!B_UDRIE && B_UDRE) {
M_UDRx = c; R_UDR = c;
// clear the TXC bit -- "can be cleared by writing a one to its bit // clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes // location". This makes sure flush() won't return until the bytes
// actually got written // actually got written
SBI(M_UCSRxA, M_TXCx); B_TXC = 1;
return; return;
} }
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
// If global interrupts are disabled (as the result of being called from an ISR)... // If global interrupts are disabled (as the result of being called from an ISR)...
if (!ISRS_ENABLED()) { if (!ISRS_ENABLED()) {
@ -530,7 +484,7 @@
while (i == tx_buffer.tail) { while (i == tx_buffer.tail) {
// If we can transmit another byte, do it. // If we can transmit another byte, do it.
if (TEST(M_UCSRxA, M_UDREx)) _tx_udr_empty_irq(); if (B_UDRE) _tx_udr_empty_irq();
// Make sure compiler rereads tx_buffer.tail // Make sure compiler rereads tx_buffer.tail
sw_barrier(); sw_barrier();
@ -538,7 +492,7 @@
} }
else { else {
// Interrupts are enabled, just wait until there is space // Interrupts are enabled, just wait until there is space
while (i == tx_buffer.tail) { sw_barrier(); } while (i == tx_buffer.tail) sw_barrier();
} }
// Store new char. head is always safe to move // Store new char. head is always safe to move
@ -546,10 +500,27 @@
tx_buffer.head = i; tx_buffer.head = i;
// Enable TX ISR - Non atomic, but it will eventually enable TX ISR // Enable TX ISR - Non atomic, but it will eventually enable TX ISR
SBI(M_UCSRxB, M_UDRIEx); B_UDRIE = 1;
}
} }
void MarlinSerial::flushTX(void) { template<typename Cfg>
void MarlinSerial<Cfg>::flushTX(void) {
if (Cfg::TX_SIZE == 0) {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// Wait until everything was transmitted
while (!B_TXC) sw_barrier();
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
else {
// No bytes written, no need to flush. This special case is needed since there's // No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization. // no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return; if (!_written) return;
@ -558,11 +529,10 @@
if (!ISRS_ENABLED()) { if (!ISRS_ENABLED()) {
// Wait until everything was transmitted - We must do polling, as interrupts are disabled // Wait until everything was transmitted - We must do polling, as interrupts are disabled
while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) { while (tx_buffer.head != tx_buffer.tail || !B_TXC) {
// If there is more space, send an extra character // If there is more space, send an extra character
if (TEST(M_UCSRxA, M_UDREx)) if (B_UDRE) _tx_udr_empty_irq();
_tx_udr_empty_irq();
sw_barrier(); sw_barrier();
} }
@ -570,55 +540,40 @@
} }
else { else {
// Wait until everything was transmitted // Wait until everything was transmitted
while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) sw_barrier(); while (tx_buffer.head != tx_buffer.tail || !B_TXC) sw_barrier();
} }
// At this point nothing is queued anymore (DRIE is disabled) and // At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set). // the hardware finished transmission (TXC is set).
} }
#else // TX_BUFFER_SIZE == 0
void MarlinSerial::write(const uint8_t c) {
_written = true;
while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier();
M_UDRx = c;
} }
void MarlinSerial::flushTX(void) {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// Wait until everything was transmitted
while (!TEST(M_UCSRxA, M_TXCx)) sw_barrier();
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
#endif // TX_BUFFER_SIZE == 0
/** /**
* Imports from print.h * Imports from print.h
*/ */
void MarlinSerial::print(char c, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(char c, int base) {
print((long)c, base); print((long)c, base);
} }
void MarlinSerial::print(unsigned char b, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned char b, int base) {
print((unsigned long)b, base); print((unsigned long)b, base);
} }
void MarlinSerial::print(int n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(int n, int base) {
print((long)n, base); print((long)n, base);
} }
void MarlinSerial::print(unsigned int n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned int n, int base) {
print((unsigned long)n, base); print((unsigned long)n, base);
} }
void MarlinSerial::print(long n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(long n, int base) {
if (base == 0) write(n); if (base == 0) write(n);
else if (base == 10) { else if (base == 10) {
if (n < 0) { print('-'); n = -n; } if (n < 0) { print('-'); n = -n; }
@ -628,68 +583,81 @@
printNumber(n, base); printNumber(n, base);
} }
void MarlinSerial::print(unsigned long n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned long n, int base) {
if (base == 0) write(n); if (base == 0) write(n);
else printNumber(n, base); else printNumber(n, base);
} }
void MarlinSerial::print(double n, int digits) { template<typename Cfg>
void MarlinSerial<Cfg>::print(double n, int digits) {
printFloat(n, digits); printFloat(n, digits);
} }
void MarlinSerial::println(void) { template<typename Cfg>
void MarlinSerial<Cfg>::println(void) {
print('\r'); print('\r');
print('\n'); print('\n');
} }
void MarlinSerial::println(const String& s) { template<typename Cfg>
void MarlinSerial<Cfg>::println(const String& s) {
print(s); print(s);
println(); println();
} }
void MarlinSerial::println(const char c[]) { template<typename Cfg>
void MarlinSerial<Cfg>::println(const char c[]) {
print(c); print(c);
println(); println();
} }
void MarlinSerial::println(char c, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(char c, int base) {
print(c, base); print(c, base);
println(); println();
} }
void MarlinSerial::println(unsigned char b, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned char b, int base) {
print(b, base); print(b, base);
println(); println();
} }
void MarlinSerial::println(int n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(int n, int base) {
print(n, base); print(n, base);
println(); println();
} }
void MarlinSerial::println(unsigned int n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned int n, int base) {
print(n, base); print(n, base);
println(); println();
} }
void MarlinSerial::println(long n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(long n, int base) {
print(n, base); print(n, base);
println(); println();
} }
void MarlinSerial::println(unsigned long n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned long n, int base) {
print(n, base); print(n, base);
println(); println();
} }
void MarlinSerial::println(double n, int digits) { template<typename Cfg>
void MarlinSerial<Cfg>::println(double n, int digits) {
print(n, digits); print(n, digits);
println(); println();
} }
// Private Methods // Private Methods
void MarlinSerial::printNumber(unsigned long n, uint8_t base) { template<typename Cfg>
void MarlinSerial<Cfg>::printNumber(unsigned long n, uint8_t base) {
if (n) { if (n) {
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
int8_t i = 0; int8_t i = 0;
@ -704,7 +672,8 @@
print('0'); print('0');
} }
void MarlinSerial::printFloat(double number, uint8_t digits) { template<typename Cfg>
void MarlinSerial<Cfg>::printFloat(double number, uint8_t digits) {
// Handle negative numbers // Handle negative numbers
if (number < 0.0) { if (number < 0.0) {
print('-'); print('-');
@ -713,9 +682,7 @@
// Round correctly so that print(1.999, 2) prints as "2.00" // Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5; double rounding = 0.5;
for (uint8_t i = 0; i < digits; ++i) for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1;
rounding *= 0.1;
number += rounding; number += rounding;
// Extract the integer part of the number and print it // Extract the integer part of the number and print it
@ -736,8 +703,20 @@
} }
} }
// Hookup ISR handlers
ISR(SERIAL_REGNAME(USART,SERIAL_PORT,_RX_vect)) {
MarlinSerial<MarlinSerialCfg>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART,SERIAL_PORT,_UDRE_vect)) {
MarlinSerial<MarlinSerialCfg>::_tx_udr_empty_irq();
}
// Preinstantiate // Preinstantiate
MarlinSerial customizedSerial; template class MarlinSerial<MarlinSerialCfg>;
// Instantiate
MarlinSerial<MarlinSerialCfg> customizedSerial;
#endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H) #endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)

View File

@ -27,12 +27,13 @@
* Modified 28 September 2010 by Mark Sproul * Modified 28 September 2010 by Mark Sproul
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer) * Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF) * Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
* Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances
*/ */
#ifndef _MARLINSERIAL_H_ #ifndef _MARLINSERIAL_H_
#define _MARLINSERIAL_H_ #define _MARLINSERIAL_H_
#include "../../inc/MarlinConfigPre.h" #include "../shared/MarlinSerial.h"
#include <WString.h> #include <WString.h>
@ -40,6 +41,8 @@
#define SERIAL_PORT 0 #define SERIAL_PORT 0
#endif #endif
#ifndef USBCON
// The presence of the UBRRH register is used to detect a UART. // The presence of the UBRRH register is used to detect a UART.
#define UART_PRESENT(port) ((port == 0 && (defined(UBRRH) || defined(UBRR0H))) || \ #define UART_PRESENT(port) ((port == 0 && (defined(UBRRH) || defined(UBRR0H))) || \
(port == 1 && defined(UBRR1H)) || (port == 2 && defined(UBRR2H)) || \ (port == 1 && defined(UBRR1H)) || (port == 2 && defined(UBRR2H)) || \
@ -55,24 +58,84 @@
#endif #endif
// Registers used by MarlinSerial class (expanded depending on selected serial port) // Registers used by MarlinSerial class (expanded depending on selected serial port)
#define M_UCSRxA SERIAL_REGNAME(UCSR,SERIAL_PORT,A) // defines M_UCSRxA to be UCSRnA where n is the serial port number
#define M_UCSRxB SERIAL_REGNAME(UCSR,SERIAL_PORT,B) // Templated 8bit register (generic)
#define M_RXENx SERIAL_REGNAME(RXEN,SERIAL_PORT,) #define UART_REGISTER_DECL_BASE(registerbase, suffix) \
#define M_TXENx SERIAL_REGNAME(TXEN,SERIAL_PORT,) template<int portNr> struct R_##registerbase##x##suffix {}
#define M_TXCx SERIAL_REGNAME(TXC,SERIAL_PORT,)
#define M_RXCIEx SERIAL_REGNAME(RXCIE,SERIAL_PORT,) // Templated 8bit register (specialization for each port)
#define M_UDREx SERIAL_REGNAME(UDRE,SERIAL_PORT,) #define UART_REGISTER_DECL(port, registerbase, suffix) \
#define M_FEx SERIAL_REGNAME(FE,SERIAL_PORT,) template<> struct R_##registerbase##x##suffix<port> { \
#define M_DORx SERIAL_REGNAME(DOR,SERIAL_PORT,) constexpr R_##registerbase##x##suffix(int) {} \
#define M_UPEx SERIAL_REGNAME(UPE,SERIAL_PORT,) FORCE_INLINE void operator=(uint8_t newVal) const { SERIAL_REGNAME(registerbase,port,suffix) = newVal; } \
#define M_UDRIEx SERIAL_REGNAME(UDRIE,SERIAL_PORT,) FORCE_INLINE operator uint8_t() const { return SERIAL_REGNAME(registerbase,port,suffix); } \
#define M_UDRx SERIAL_REGNAME(UDR,SERIAL_PORT,) }
#define M_UBRRxH SERIAL_REGNAME(UBRR,SERIAL_PORT,H)
#define M_UBRRxL SERIAL_REGNAME(UBRR,SERIAL_PORT,L) // Templated 1bit register (generic)
#define M_RXCx SERIAL_REGNAME(RXC,SERIAL_PORT,) #define UART_BIT_DECL_BASE(registerbase, suffix, bit) \
#define M_USARTx_RX_vect SERIAL_REGNAME(USART,SERIAL_PORT,_RX_vect) template<int portNr>struct B_##bit##x {}
#define M_U2Xx SERIAL_REGNAME(U2X,SERIAL_PORT,)
#define M_USARTx_UDRE_vect SERIAL_REGNAME(USART,SERIAL_PORT,_UDRE_vect) // Templated 1bit register (specialization for each port)
#define UART_BIT_DECL(port, registerbase, suffix, bit) \
template<> struct B_##bit##x<port> { \
constexpr B_##bit##x(int) {} \
FORCE_INLINE void operator=(int newVal) const { \
if (newVal) \
SBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \
else \
CBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \
} \
FORCE_INLINE operator bool() const { return TEST(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); } \
}
#define UART_DECL_BASE() \
UART_REGISTER_DECL_BASE(UCSR,A);\
UART_REGISTER_DECL_BASE(UDR,);\
UART_REGISTER_DECL_BASE(UBRR,H);\
UART_REGISTER_DECL_BASE(UBRR,L);\
UART_BIT_DECL_BASE(UCSR,B,RXEN);\
UART_BIT_DECL_BASE(UCSR,B,TXEN);\
UART_BIT_DECL_BASE(UCSR,A,TXC);\
UART_BIT_DECL_BASE(UCSR,B,RXCIE);\
UART_BIT_DECL_BASE(UCSR,A,UDRE);\
UART_BIT_DECL_BASE(UCSR,A,FE);\
UART_BIT_DECL_BASE(UCSR,A,DOR);\
UART_BIT_DECL_BASE(UCSR,B,UDRIE);\
UART_BIT_DECL_BASE(UCSR,A,RXC);\
UART_BIT_DECL_BASE(UCSR,A,U2X)
#define UART_DECL(port) \
UART_REGISTER_DECL(port,UCSR,A);\
UART_REGISTER_DECL(port,UDR,);\
UART_REGISTER_DECL(port,UBRR,H);\
UART_REGISTER_DECL(port,UBRR,L);\
UART_BIT_DECL(port,UCSR,B,RXEN);\
UART_BIT_DECL(port,UCSR,B,TXEN);\
UART_BIT_DECL(port,UCSR,A,TXC);\
UART_BIT_DECL(port,UCSR,B,RXCIE);\
UART_BIT_DECL(port,UCSR,A,UDRE);\
UART_BIT_DECL(port,UCSR,A,FE);\
UART_BIT_DECL(port,UCSR,A,DOR);\
UART_BIT_DECL(port,UCSR,B,UDRIE);\
UART_BIT_DECL(port,UCSR,A,RXC);\
UART_BIT_DECL(port,UCSR,A,U2X)
// Declare empty templates
UART_DECL_BASE();
// And all the specializations for each possible serial port
#if UART_PRESENT(0)
UART_DECL(0);
#endif
#if UART_PRESENT(1)
UART_DECL(1);
#endif
#if UART_PRESENT(2)
UART_DECL(2);
#endif
#if UART_PRESENT(3)
UART_DECL(3);
#endif
#define DEC 10 #define DEC 10
#define HEX 16 #define HEX 16
@ -80,33 +143,71 @@
#define BIN 2 #define BIN 2
#define BYTE 0 #define BYTE 0
#ifndef USBCON // Templated type selector
// We're using a ring buffer (I think), in which rx_buffer_head is the index of the template<bool b, typename T, typename F> struct TypeSelector { typedef T type;} ;
// location to which to write the next incoming character and rx_buffer_tail is the template<typename T, typename F> struct TypeSelector<false, T, F> { typedef F type; };
// index of the location from which to read.
#if RX_BUFFER_SIZE > 256
typedef uint16_t ring_buffer_pos_t;
#else
typedef uint8_t ring_buffer_pos_t;
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
extern uint8_t rx_dropped_bytes;
#endif
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
extern uint8_t rx_buffer_overruns;
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
extern uint8_t rx_framing_errors;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
extern ring_buffer_pos_t rx_max_enqueued;
#endif
template<typename Cfg>
class MarlinSerial { class MarlinSerial {
protected:
// Registers
static constexpr R_UCSRxA<Cfg::PORT> R_UCSRA = 0;
static constexpr R_UDRx<Cfg::PORT> R_UDR = 0;
static constexpr R_UBRRxH<Cfg::PORT> R_UBRRH = 0;
static constexpr R_UBRRxL<Cfg::PORT> R_UBRRL = 0;
// Bits
static constexpr B_RXENx<Cfg::PORT> B_RXEN = 0;
static constexpr B_TXENx<Cfg::PORT> B_TXEN = 0;
static constexpr B_TXCx<Cfg::PORT> B_TXC = 0;
static constexpr B_RXCIEx<Cfg::PORT> B_RXCIE = 0;
static constexpr B_UDREx<Cfg::PORT> B_UDRE = 0;
static constexpr B_FEx<Cfg::PORT> B_FE = 0;
static constexpr B_DORx<Cfg::PORT> B_DOR = 0;
static constexpr B_UDRIEx<Cfg::PORT> B_UDRIE = 0;
static constexpr B_RXCx<Cfg::PORT> B_RXC = 0;
static constexpr B_U2Xx<Cfg::PORT> B_U2X = 0;
// Base size of type on buffer size
typedef typename TypeSelector<(Cfg::RX_SIZE>256), uint16_t, uint8_t>::type ring_buffer_pos_t;
struct ring_buffer_r {
volatile ring_buffer_pos_t head, tail;
unsigned char buffer[Cfg::RX_SIZE];
};
struct ring_buffer_t {
volatile uint8_t head, tail;
unsigned char buffer[Cfg::TX_SIZE];
};
static ring_buffer_r rx_buffer;
static ring_buffer_t tx_buffer;
static bool _written;
static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
static uint8_t xon_xoff_state,
rx_dropped_bytes,
rx_buffer_overruns,
rx_framing_errors;
static ring_buffer_pos_t rx_max_enqueued;
static FORCE_INLINE ring_buffer_pos_t atomic_read_rx_head();
static volatile bool rx_tail_value_not_stable;
static volatile uint16_t rx_tail_value_backup;
static FORCE_INLINE void atomic_set_rx_tail(ring_buffer_pos_t value);
static FORCE_INLINE ring_buffer_pos_t atomic_read_rx_tail();
public:
FORCE_INLINE static void store_rxd_char();
FORCE_INLINE static void _tx_udr_empty_irq(void);
public: public:
MarlinSerial() {}; MarlinSerial() {};
@ -119,21 +220,10 @@
static void write(const uint8_t c); static void write(const uint8_t c);
static void flushTX(void); static void flushTX(void);
#if ENABLED(SERIAL_STATS_DROPPED_RX) FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; }
FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; } FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; }
#endif FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; }
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; }
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
FORCE_INLINE static uint32_t buffer_overruns() { return rx_buffer_overruns; }
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
FORCE_INLINE static uint32_t framing_errors() { return rx_framing_errors; }
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; }
#endif
FORCE_INLINE static void write(const char* str) { while (*str) write(*str++); } FORCE_INLINE static void write(const char* str) { while (*str) write(*str++); }
FORCE_INLINE static void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); } FORCE_INLINE static void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
@ -165,7 +255,20 @@
static void printFloat(double, uint8_t); static void printFloat(double, uint8_t);
}; };
extern MarlinSerial customizedSerial; // Serial port configuration
struct MarlinSerialCfg {
static constexpr int PORT = SERIAL_PORT;
static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE;
static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE;
static constexpr bool XONOFF = bSERIAL_XON_XOFF;
static constexpr bool EMERGENCYPARSER = bEMERGENCY_PARSER;
static constexpr bool DROPPED_RX = bSERIAL_STATS_DROPPED_RX;
static constexpr bool RX_OVERRUNS = bSERIAL_STATS_RX_BUFFER_OVERRUNS;
static constexpr bool RX_FRAMING_ERRORS = bSERIAL_STATS_RX_FRAMING_ERRORS;
static constexpr bool MAX_RX_QUEUED = bSERIAL_STATS_MAX_RX_QUEUED;
};
extern MarlinSerial<MarlinSerialCfg> customizedSerial;
#endif // !USBCON #endif // !USBCON

View File

@ -29,100 +29,32 @@
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
// If not using the USB port as serial port
#if SERIAL_PORT >= 0
#include "MarlinSerial_Due.h" #include "MarlinSerial_Due.h"
#include "InterruptVectors_Due.h" #include "InterruptVectors_Due.h"
#include "../../Marlin.h" #include "../../Marlin.h"
// If not using the USB port as serial port template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0 };
#if SERIAL_PORT >= 0 template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
// Based on selected port, use the proper configuration template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
#if SERIAL_PORT == 0 template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
#define HWUART UART template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
#define HWUART_IRQ UART_IRQn template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
#define HWUART_IRQ_ID ID_UART template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
#elif SERIAL_PORT == 1
#define HWUART ((Uart*)USART0)
#define HWUART_IRQ USART0_IRQn
#define HWUART_IRQ_ID ID_USART0
#elif SERIAL_PORT == 2
#define HWUART ((Uart*)USART1)
#define HWUART_IRQ USART1_IRQn
#define HWUART_IRQ_ID ID_USART1
#elif SERIAL_PORT == 3
#define HWUART ((Uart*)USART2)
#define HWUART_IRQ USART2_IRQn
#define HWUART_IRQ_ID ID_USART2
#elif SERIAL_PORT == 4
#define HWUART ((Uart*)USART3)
#define HWUART_IRQ USART3_IRQn
#define HWUART_IRQ_ID ID_USART3
#endif
struct ring_buffer_r {
unsigned char buffer[RX_BUFFER_SIZE];
volatile ring_buffer_pos_t head, tail;
};
#if TX_BUFFER_SIZE > 0
struct ring_buffer_t {
unsigned char buffer[TX_BUFFER_SIZE];
volatile uint8_t head, tail;
};
#endif
ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
#if TX_BUFFER_SIZE > 0
ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
#endif
static bool _written;
#if ENABLED(SERIAL_XON_XOFF)
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
// Validate that RX buffer size is at least 4096 bytes- According to several experiments, on
// the original Arduino Due that uses a ATmega16U2 as USB to serial bridge, due to the introduced
// latencies, at least 2959 bytes of RX buffering (when transmitting at 250kbits/s) are required
// to avoid overflows.
#if RX_BUFFER_SIZE < 4096
#error Arduino DUE requires at least 4096 bytes of RX buffer to avoid buffer overflows when using XON/XOFF handshake
#endif
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
uint8_t rx_dropped_bytes = 0;
#endif
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
uint8_t rx_buffer_overruns = 0;
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
uint8_t rx_framing_errors = 0;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
ring_buffer_pos_t rx_max_enqueued = 0;
#endif
// A SW memory barrier, to ensure GCC does not overoptimize loops // A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory"); #define sw_barrier() asm volatile("": : :"memory");
#if ENABLED(EMERGENCY_PARSER)
#include "../../feature/emergency_parser.h" #include "../../feature/emergency_parser.h"
#endif
// (called with RX interrupts disabled) // (called with RX interrupts disabled)
FORCE_INLINE void store_rxd_char() { template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
#if ENABLED(EMERGENCY_PARSER)
static EmergencyParser::State emergency_state; // = EP_RESET static EmergencyParser::State emergency_state; // = EP_RESET
#endif
// Get the tail - Nothing can alter its value while we are at this ISR // Get the tail - Nothing can alter its value while we are at this ISR
const ring_buffer_pos_t t = rx_buffer.tail; const ring_buffer_pos_t t = rx_buffer.tail;
@ -131,14 +63,12 @@
ring_buffer_pos_t h = rx_buffer.head; ring_buffer_pos_t h = rx_buffer.head;
// Get the next element // Get the next element
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART // Read the character from the USART
uint8_t c = HWUART->UART_RHR; uint8_t c = HWUART->UART_RHR;
#if ENABLED(EMERGENCY_PARSER) if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
emergency_parser.update(emergency_state, c);
#endif
// If the character is to be stored at the index just before the tail // If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the RX FIFO is // (such that the head would advance to the current tail), the RX FIFO is
@ -147,29 +77,26 @@
rx_buffer.buffer[h] = c; rx_buffer.buffer[h] = c;
h = i; h = i;
} }
#if ENABLED(SERIAL_STATS_DROPPED_RX) else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
else if (!++rx_dropped_bytes) --rx_dropped_bytes; --rx_dropped_bytes;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Calculate count of bytes stored into the RX buffer // Calculate count of bytes stored into the RX buffer
// Keep track of the maximum count of enqueued bytes // Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count); if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count);
#endif
#if ENABLED(SERIAL_XON_XOFF) if (Cfg::XONOFF) {
// If the last char that was sent was an XON // If the last char that was sent was an XON
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// Bytes stored into the RX buffer // Bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// If over 12.5% of RX buffer capacity, send XOFF before running out of // If over 12.5% of RX buffer capacity, send XOFF before running out of
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
// and stop sending bytes. This translates to 13mS propagation time. // and stop sending bytes. This translates to 13mS propagation time.
if (rx_count >= (RX_BUFFER_SIZE) / 8) { if (rx_count >= (Cfg::RX_SIZE) / 8) {
// At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted. // At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted.
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
@ -189,14 +116,12 @@
if (status & UART_SR_RXRDY) { if (status & UART_SR_RXRDY) {
// We received a char while waiting for the TX buffer to be empty - Receive and process it! // We received a char while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART // Read the character from the USART
c = HWUART->UART_RHR; c = HWUART->UART_RHR;
#if ENABLED(EMERGENCY_PARSER) if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
emergency_parser.update(emergency_state, c);
#endif
// If the character is to be stored at the index just before the tail // If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is // (such that the head would advance to the current tail), the FIFO is
@ -205,9 +130,8 @@
rx_buffer.buffer[h] = c; rx_buffer.buffer[h] = c;
h = i; h = i;
} }
#if ENABLED(SERIAL_STATS_DROPPED_RX) else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
else if (!++rx_dropped_bytes) --rx_dropped_bytes; --rx_dropped_bytes;
#endif
} }
sw_barrier(); sw_barrier();
} }
@ -226,14 +150,12 @@
if (status & UART_SR_RXRDY) { if (status & UART_SR_RXRDY) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it! // A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART // Read the character from the USART
c = HWUART->UART_RHR; c = HWUART->UART_RHR;
#if ENABLED(EMERGENCY_PARSER) if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
emergency_parser.update(emergency_state, c);
#endif
// If the character is to be stored at the index just before the tail // If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is // (such that the head would advance to the current tail), the FIFO is
@ -242,9 +164,8 @@
rx_buffer.buffer[h] = c; rx_buffer.buffer[h] = c;
h = i; h = i;
} }
#if ENABLED(SERIAL_STATS_DROPPED_RX) else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
else if (!++rx_dropped_bytes) --rx_dropped_bytes; --rx_dropped_bytes;
#endif
} }
sw_barrier(); sw_barrier();
} }
@ -253,20 +174,20 @@
// have any issues writing to the UART TX register if it needs to! // have any issues writing to the UART TX register if it needs to!
} }
} }
#endif // SERIAL_XON_XOFF }
// Store the new head value // Store the new head value
rx_buffer.head = h; rx_buffer.head = h;
} }
#if TX_BUFFER_SIZE > 0 template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::_tx_thr_empty_irq(void) {
FORCE_INLINE void _tx_thr_empty_irq(void) { if (Cfg::TX_SIZE > 0) {
// Read positions // Read positions
uint8_t t = tx_buffer.tail; uint8_t t = tx_buffer.tail;
const uint8_t h = tx_buffer.head; const uint8_t h = tx_buffer.head;
#if ENABLED(SERIAL_XON_XOFF) if (Cfg::XONOFF) {
// If an XON char is pending to be sent, do it now // If an XON char is pending to be sent, do it now
if (xon_xoff_state == XON_CHAR) { if (xon_xoff_state == XON_CHAR) {
@ -281,7 +202,7 @@
return; return;
} }
#endif }
// If nothing to transmit, just disable TX interrupts. This could // If nothing to transmit, just disable TX interrupts. This could
// happen as the result of the non atomicity of the disabling of RX // happen as the result of the non atomicity of the disabling of RX
@ -293,41 +214,32 @@
// There is something to TX, Send the next byte // There is something to TX, Send the next byte
const uint8_t c = tx_buffer.buffer[t]; const uint8_t c = tx_buffer.buffer[t];
t = (t + 1) & (TX_BUFFER_SIZE - 1); t = (t + 1) & (Cfg::TX_SIZE - 1);
HWUART->UART_THR = c; HWUART->UART_THR = c;
tx_buffer.tail = t; tx_buffer.tail = t;
// Disable interrupts if there is nothing to transmit following this byte // Disable interrupts if there is nothing to transmit following this byte
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY; if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
} }
}
#endif // TX_BUFFER_SIZE > 0 template<typename Cfg>
void MarlinSerial<Cfg>::UART_ISR(void) {
static void UART_ISR(void) {
const uint32_t status = HWUART->UART_SR; const uint32_t status = HWUART->UART_SR;
// Data received? // Data received?
if (status & UART_SR_RXRDY) store_rxd_char(); if (status & UART_SR_RXRDY) store_rxd_char();
#if TX_BUFFER_SIZE > 0 if (Cfg::TX_SIZE > 0) {
// Something to send, and TX interrupts are enabled (meaning something to send)? // Something to send, and TX interrupts are enabled (meaning something to send)?
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq(); if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq();
#endif }
// Acknowledge errors // Acknowledge errors
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) { if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes;
#if ENABLED(SERIAL_STATS_DROPPED_RX) if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns;
if (status & UART_SR_OVRE && !++rx_dropped_bytes) --rx_dropped_bytes; if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors;
#endif
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
if (status & UART_SR_OVRE && !++rx_buffer_overruns) --rx_buffer_overruns;
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
if (status & UART_SR_FRAME && !++rx_framing_errors) --rx_framing_errors;
#endif
// TODO: error reporting outside ISR // TODO: error reporting outside ISR
HWUART->UART_CR = UART_CR_RSTSTA; HWUART->UART_CR = UART_CR_RSTSTA;
@ -335,8 +247,8 @@
} }
// Public Methods // Public Methods
template<typename Cfg>
void MarlinSerial::begin(const long baud_setting) { void MarlinSerial<Cfg>::begin(const long baud_setting) {
// Disable UART interrupt in NVIC // Disable UART interrupt in NVIC
NVIC_DisableIRQ( HWUART_IRQ ); NVIC_DisableIRQ( HWUART_IRQ );
@ -382,12 +294,11 @@
// Enable receiver and transmitter // Enable receiver and transmitter
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN; HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
#if TX_BUFFER_SIZE > 0 if (Cfg::TX_SIZE > 0) _written = false;
_written = false;
#endif
} }
void MarlinSerial::end() { template<typename Cfg>
void MarlinSerial<Cfg>::end() {
// Disable UART interrupt in NVIC // Disable UART interrupt in NVIC
NVIC_DisableIRQ( HWUART_IRQ ); NVIC_DisableIRQ( HWUART_IRQ );
@ -399,12 +310,14 @@
pmc_disable_periph_clk( HWUART_IRQ_ID ); pmc_disable_periph_clk( HWUART_IRQ_ID );
} }
int MarlinSerial::peek(void) { template<typename Cfg>
int MarlinSerial<Cfg>::peek(void) {
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail]; const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
return v; return v;
} }
int MarlinSerial::read(void) { template<typename Cfg>
int MarlinSerial<Cfg>::read(void) {
const ring_buffer_pos_t h = rx_buffer.head; const ring_buffer_pos_t h = rx_buffer.head;
ring_buffer_pos_t t = rx_buffer.tail; ring_buffer_pos_t t = rx_buffer.tail;
@ -412,65 +325,75 @@
if (h == t) return -1; if (h == t) return -1;
int v = rx_buffer.buffer[t]; int v = rx_buffer.buffer[t];
t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
// Advance tail // Advance tail
rx_buffer.tail = t; rx_buffer.tail = t;
#if ENABLED(SERIAL_XON_XOFF) if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent... // If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer // Get count of bytes in the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes // When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes
if (rx_count < (RX_BUFFER_SIZE) / 10) { if (rx_count < (Cfg::RX_SIZE) / 10) {
#if TX_BUFFER_SIZE > 0 if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent. // Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR; xon_xoff_state = XON_CHAR;
// Enable TX isr. // Enable TX isr.
HWUART->UART_IER = UART_IER_TXRDY; HWUART->UART_IER = UART_IER_TXRDY;
#else }
else {
// If not using TX interrupts, we must send the XON char now // If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = XON_CHAR; HWUART->UART_THR = XON_CHAR;
#endif
} }
} }
#endif }
}
return v; return v;
} }
ring_buffer_pos_t MarlinSerial::available(void) { template<typename Cfg>
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available(void) {
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail; const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
} }
void MarlinSerial::flush(void) { template<typename Cfg>
void MarlinSerial<Cfg>::flush(void) {
rx_buffer.tail = rx_buffer.head; rx_buffer.tail = rx_buffer.head;
#if ENABLED(SERIAL_XON_XOFF) if (Cfg::XONOFF) {
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
#if TX_BUFFER_SIZE > 0 if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent. // Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR; xon_xoff_state = XON_CHAR;
// Enable TX isr. // Enable TX isr.
HWUART->UART_IER = UART_IER_TXRDY; HWUART->UART_IER = UART_IER_TXRDY;
#else }
else {
// If not using TX interrupts, we must send the XON char now // If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier(); while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = XON_CHAR; HWUART->UART_THR = XON_CHAR;
#endif
} }
#endif }
}
} }
#if TX_BUFFER_SIZE > 0 template<typename Cfg>
void MarlinSerial::write(const uint8_t c) { void MarlinSerial<Cfg>::write(const uint8_t c) {
_written = true; _written = true;
if (Cfg::TX_SIZE == 0) {
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = c;
}
else {
// If the TX interrupts are disabled and the data register // If the TX interrupts are disabled and the data register
// is empty, just write the byte to the data register and // is empty, just write the byte to the data register and
// be done. This shortcut helps significantly improve the // be done. This shortcut helps significantly improve the
@ -483,7 +406,7 @@
return; return;
} }
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
// If global interrupts are disabled (as the result of being called from an ISR)... // If global interrupts are disabled (as the result of being called from an ISR)...
if (!ISRS_ENABLED()) { if (!ISRS_ENABLED()) {
@ -508,10 +431,25 @@
// Enable TX isr - Non atomic, but it will eventually enable TX isr // Enable TX isr - Non atomic, but it will eventually enable TX isr
HWUART->UART_IER = UART_IER_TXRDY; HWUART->UART_IER = UART_IER_TXRDY;
} }
}
void MarlinSerial::flushTX(void) { template<typename Cfg>
void MarlinSerial<Cfg>::flushTX(void) {
// TX // TX
if (Cfg::TX_SIZE == 0) {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// Wait until everything was transmitted
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
else {
// If we have never written a byte, no need to flush. This special // If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit // case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization // complete) bit to 1 during initialization
@ -536,51 +474,34 @@
// At this point nothing is queued anymore (DRIE is disabled) and // At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set). // the hardware finished transmission (TXC is set).
} }
#else // TX_BUFFER_SIZE == 0
void MarlinSerial::write(const uint8_t c) {
_written = true;
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = c;
} }
void MarlinSerial::flushTX(void) {
// TX
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// Wait until everything was transmitted
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
#endif // TX_BUFFER_SIZE == 0
/** /**
* Imports from print.h * Imports from print.h
*/ */
void MarlinSerial::print(char c, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(char c, int base) {
print((long)c, base); print((long)c, base);
} }
void MarlinSerial::print(unsigned char b, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned char b, int base) {
print((unsigned long)b, base); print((unsigned long)b, base);
} }
void MarlinSerial::print(int n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(int n, int base) {
print((long)n, base); print((long)n, base);
} }
void MarlinSerial::print(unsigned int n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned int n, int base) {
print((unsigned long)n, base); print((unsigned long)n, base);
} }
void MarlinSerial::print(long n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(long n, int base) {
if (base == 0) write(n); if (base == 0) write(n);
else if (base == 10) { else if (base == 10) {
if (n < 0) { print('-'); n = -n; } if (n < 0) { print('-'); n = -n; }
@ -590,68 +511,80 @@
printNumber(n, base); printNumber(n, base);
} }
void MarlinSerial::print(unsigned long n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned long n, int base) {
if (base == 0) write(n); if (base == 0) write(n);
else printNumber(n, base); else printNumber(n, base);
} }
void MarlinSerial::print(double n, int digits) { template<typename Cfg>
void MarlinSerial<Cfg>::print(double n, int digits) {
printFloat(n, digits); printFloat(n, digits);
} }
void MarlinSerial::println(void) { template<typename Cfg>
void MarlinSerial<Cfg>::println(void) {
print('\r'); print('\r');
print('\n'); print('\n');
} }
void MarlinSerial::println(const String& s) { template<typename Cfg>
void MarlinSerial<Cfg>::println(const String& s) {
print(s); print(s);
println(); println();
} }
void MarlinSerial::println(const char c[]) { template<typename Cfg>
void MarlinSerial<Cfg>::println(const char c[]) {
print(c); print(c);
println(); println();
} }
void MarlinSerial::println(char c, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(char c, int base) {
print(c, base); print(c, base);
println(); println();
} }
void MarlinSerial::println(unsigned char b, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned char b, int base) {
print(b, base); print(b, base);
println(); println();
} }
void MarlinSerial::println(int n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(int n, int base) {
print(n, base); print(n, base);
println(); println();
} }
void MarlinSerial::println(unsigned int n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned int n, int base) {
print(n, base); print(n, base);
println(); println();
} }
void MarlinSerial::println(long n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(long n, int base) {
print(n, base); print(n, base);
println(); println();
} }
void MarlinSerial::println(unsigned long n, int base) { template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned long n, int base) {
print(n, base); print(n, base);
println(); println();
} }
void MarlinSerial::println(double n, int digits) { template<typename Cfg>
void MarlinSerial<Cfg>::println(double n, int digits) {
print(n, digits); print(n, digits);
println(); println();
} }
// Private Methods // Private Methods
template<typename Cfg>
void MarlinSerial::printNumber(unsigned long n, uint8_t base) { void MarlinSerial<Cfg>::printNumber(unsigned long n, uint8_t base) {
if (n) { if (n) {
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
int8_t i = 0; int8_t i = 0;
@ -666,7 +599,8 @@
print('0'); print('0');
} }
void MarlinSerial::printFloat(double number, uint8_t digits) { template<typename Cfg>
void MarlinSerial<Cfg>::printFloat(double number, uint8_t digits) {
// Handle negative numbers // Handle negative numbers
if (number < 0.0) { if (number < 0.0) {
print('-'); print('-');
@ -697,7 +631,11 @@
} }
// Preinstantiate // Preinstantiate
MarlinSerial customizedSerial; template class MarlinSerial<MarlinSerialCfg>;
// Instantiate
MarlinSerial<MarlinSerialCfg> customizedSerial;
#endif #endif
#endif // ARDUINO_ARCH_SAM #endif // ARDUINO_ARCH_SAM

View File

@ -29,7 +29,7 @@
#ifndef MARLINSERIAL_DUE_H #ifndef MARLINSERIAL_DUE_H
#define MARLINSERIAL_DUE_H #define MARLINSERIAL_DUE_H
#include "../../inc/MarlinConfig.h" #include "../shared/MarlinSerial.h"
#if SERIAL_PORT >= 0 #if SERIAL_PORT >= 0
@ -60,29 +60,60 @@
// #error "TX_BUFFER_SIZE must be 0, a power of 2 greater than 1, and no greater than 256." // #error "TX_BUFFER_SIZE must be 0, a power of 2 greater than 1, and no greater than 256."
//#endif //#endif
#if RX_BUFFER_SIZE > 256 // Templated type selector
typedef uint16_t ring_buffer_pos_t; template<bool b, typename T, typename F> struct TypeSelector { typedef T type;} ;
#else template<typename T, typename F> struct TypeSelector<false, T, F> { typedef F type; };
typedef uint8_t ring_buffer_pos_t;
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX) // Templated structure wrapper
extern uint8_t rx_dropped_bytes; template<typename S, unsigned int addr> struct StructWrapper {
#endif constexpr StructWrapper(int) {}
FORCE_INLINE S* operator->() const { return (S*)addr; }
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS) };
extern uint8_t rx_buffer_overruns;
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
extern uint8_t rx_framing_errors;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
extern ring_buffer_pos_t rx_max_enqueued;
#endif
template<typename Cfg>
class MarlinSerial { class MarlinSerial {
protected:
// Information for all supported UARTs
static constexpr uint32_t BASES[] = {0x400E0800U, 0x40098000U, 0x4009C000U, 0x400A0000U, 0x400A4000U};
static constexpr IRQn_Type IRQS[] = { UART_IRQn, USART0_IRQn, USART1_IRQn, USART2_IRQn, USART3_IRQn};
static constexpr int IRQ_IDS[] = { ID_UART, ID_USART0, ID_USART1, ID_USART2, ID_USART3};
// Alias for shorter code
static constexpr StructWrapper<Uart,BASES[Cfg::PORT]> HWUART = 0;
static constexpr IRQn_Type HWUART_IRQ = IRQS[Cfg::PORT];
static constexpr int HWUART_IRQ_ID = IRQ_IDS[Cfg::PORT];
// Base size of type on buffer size
typedef typename TypeSelector<(Cfg::RX_SIZE>256), uint16_t, uint8_t>::type ring_buffer_pos_t;
struct ring_buffer_r {
volatile ring_buffer_pos_t head, tail;
unsigned char buffer[Cfg::RX_SIZE];
};
struct ring_buffer_t {
volatile uint8_t head, tail;
unsigned char buffer[Cfg::TX_SIZE];
};
static ring_buffer_r rx_buffer;
static ring_buffer_t tx_buffer;
static bool _written;
static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
static uint8_t xon_xoff_state,
rx_dropped_bytes,
rx_buffer_overruns,
rx_framing_errors;
static ring_buffer_pos_t rx_max_enqueued;
FORCE_INLINE static void store_rxd_char();
FORCE_INLINE static void _tx_thr_empty_irq(void);
static void UART_ISR(void);
public: public:
MarlinSerial() {}; MarlinSerial() {};
@ -95,21 +126,10 @@ public:
static void write(const uint8_t c); static void write(const uint8_t c);
static void flushTX(void); static void flushTX(void);
#if ENABLED(SERIAL_STATS_DROPPED_RX) FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; }
FORCE_INLINE static uint32_t dropped() { return rx_dropped_bytes; } FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; }
#endif FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; }
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; }
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
FORCE_INLINE static uint32_t buffer_overruns() { return rx_buffer_overruns; }
#endif
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
FORCE_INLINE static uint32_t framing_errors() { return rx_framing_errors; }
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; }
#endif
FORCE_INLINE static void write(const char* str) { while (*str) write(*str++); } FORCE_INLINE static void write(const char* str) { while (*str) write(*str++); }
FORCE_INLINE static void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); } FORCE_INLINE static void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
@ -141,7 +161,20 @@ private:
static void printFloat(double, uint8_t); static void printFloat(double, uint8_t);
}; };
extern MarlinSerial customizedSerial; // Serial port configuration
struct MarlinSerialCfg {
static constexpr int PORT = SERIAL_PORT;
static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE;
static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE;
static constexpr bool XONOFF = bSERIAL_XON_XOFF;
static constexpr bool EMERGENCYPARSER = bEMERGENCY_PARSER;
static constexpr bool DROPPED_RX = bSERIAL_STATS_DROPPED_RX;
static constexpr bool RX_OVERRUNS = bSERIAL_STATS_RX_BUFFER_OVERRUNS;
static constexpr bool RX_FRAMING_ERRORS = bSERIAL_STATS_RX_FRAMING_ERRORS;
static constexpr bool MAX_RX_QUEUED = bSERIAL_STATS_MAX_RX_QUEUED;
};
extern MarlinSerial<MarlinSerialCfg> customizedSerial;
#endif // SERIAL_PORT >= 0 #endif // SERIAL_PORT >= 0

View File

@ -0,0 +1,61 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* HAL/shared/MarlinSerial.h
*/
#include "../../inc/MarlinConfigPre.h"
constexpr bool
bSERIAL_XON_XOFF = (false
#if ENABLED(SERIAL_XON_XOFF)
|| true
#endif
),
bEMERGENCY_PARSER = (false
#if ENABLED(EMERGENCY_PARSER)
|| true
#endif
),
bSERIAL_STATS_DROPPED_RX = (false
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|| true
#endif
),
bSERIAL_STATS_RX_BUFFER_OVERRUNS = (false
#if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
|| true
#endif
),
bSERIAL_STATS_RX_FRAMING_ERRORS = (false
#if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
|| true
#endif
),
bSERIAL_STATS_MAX_RX_QUEUED = (false
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|| true
#endif
);