Marlin/buildroot/share/PlatformIO/scripts/chitu_crypt.py
2020-10-16 16:39:54 -05:00

128 lines
3.7 KiB
Python

Import("env")
import os
import random
import struct
import uuid
# Relocate firmware from 0x08000000 to 0x08008800
env['CPPDEFINES'].remove(("VECT_TAB_ADDR", "0x8000000"))
env['CPPDEFINES'].append(("VECT_TAB_ADDR", "0x08008800"))
custom_ld_script = os.path.abspath("buildroot/share/PlatformIO/ldscripts/chitu_f103.ld")
for i, flag in enumerate(env["LINKFLAGS"]):
if "-Wl,-T" in flag:
env["LINKFLAGS"][i] = "-Wl,-T" + custom_ld_script
elif flag == "-T":
env["LINKFLAGS"][i + 1] = custom_ld_script
def calculate_crc(contents, seed):
accumulating_xor_value = seed;
for i in range(0, len(contents), 4):
value = struct.unpack('<I', contents[ i : i + 4])[0]
accumulating_xor_value = accumulating_xor_value ^ value
return accumulating_xor_value
def xor_block(r0, r1, block_number, block_size, file_key):
# This is the loop counter
loop_counter = 0x0
# This is the key length
key_length = 0x18
# This is an initial seed
xor_seed = 0x4BAD
# This is the block counter
block_number = xor_seed * block_number
#load the xor key from the file
r7 = file_key
for loop_counter in range(0, block_size):
# meant to make sure different bits of the key are used.
xor_seed = int(loop_counter/key_length)
# IP is a scratch register / R12
ip = loop_counter - (key_length * xor_seed)
# xor_seed = (loop_counter * loop_counter) + block_number
xor_seed = (loop_counter * loop_counter) + block_number
# shift the xor_seed left by the bits in IP.
xor_seed = xor_seed >> ip
# load a byte into IP
ip = r0[loop_counter]
# XOR the seed with r7
xor_seed = xor_seed ^ r7
# and then with IP
xor_seed = xor_seed ^ ip
#Now store the byte back
r1[loop_counter] = xor_seed & 0xFF
#increment the loop_counter
loop_counter = loop_counter + 1
def encrypt_file(input, output_file, file_length):
input_file = bytearray(input.read())
block_size = 0x800
key_length = 0x18
uid_value = uuid.uuid4()
file_key = int(uid_value.hex[0:8], 16)
xor_crc = 0xEF3D4323;
# the input file is exepcted to be in chunks of 0x800
# so round the size
while len(input_file) % block_size != 0:
input_file.extend(b'0x0')
# write the file header
output_file.write(struct.pack(">I", 0x443D2D3F))
# encrypt the contents using a known file header key
# write the file_key
output_file.write(struct.pack("<I", file_key))
#TODO - how to enforce that the firmware aligns to block boundaries?
block_count = int(len(input_file) / block_size)
print ("Block Count is ", block_count)
for block_number in range(0, block_count):
block_offset = (block_number * block_size)
block_end = block_offset + block_size
block_array = bytearray(input_file[block_offset: block_end])
xor_block(block_array, block_array, block_number, block_size, file_key)
for n in range (0, block_size):
input_file[block_offset + n] = block_array[n]
# update the expected CRC value.
xor_crc = calculate_crc(block_array, xor_crc)
# write CRC
output_file.write(struct.pack("<I", xor_crc))
# finally, append the encrypted results.
output_file.write(input_file)
return
# Encrypt ${PROGNAME}.bin and save it as 'update.cbd'
def encrypt(source, target, env):
firmware = open(target[0].path, "rb")
update = open(target[0].dir.path +'/update.cbd', "wb")
length = os.path.getsize(target[0].path)
encrypt_file(firmware, update, length)
firmware.close()
update.close()
env.AddPostAction("$BUILD_DIR/${PROGNAME}.bin", encrypt);