Marlin/Marlin/M100_Free_Mem_Chk.cpp
2015-08-03 16:04:48 -05:00

278 lines
7.6 KiB
C++

#define M100_FREE_MEMORY_DUMPER // Comment out to remove Dump sub-command
#define M100_FREE_MEMORY_CORRUPTOR // Comment out to remove Corrupt sub-command
// M100 Free Memory Watcher
//
// This code watches the free memory block between the bottom of the heap and the top of the stack.
// This memory block is initialized and watched via the M100 command.
//
// M100 I Initializes the free memory block and prints vitals statistics about the area
// M100 F Identifies how much of the free memory block remains free and unused. It also
// detects and reports any corruption within the free memory block that may have
// happened due to errant firmware.
// M100 D Does a hex display of the free memory block along with a flag for any errant
// data that does not match the expected value.
// M100 C x Corrupts x locations within the free memory block. This is useful to check the
// correctness of the M100 F and M100 D commands.
//
// Initial version by Roxy-3DPrintBoard
//
//
#include "Marlin.h"
#if ENABLED(M100_FREE_MEMORY_WATCHER)
extern void *__brkval;
extern size_t __heap_start, __heap_end, __flp;
//
// Declare all the functions we need from Marlin_Main.cpp to do the work!
//
float code_value();
long code_value_long();
bool code_seen(char );
void serial_echopair_P(const char *, float );
void serial_echopair_P(const char *, double );
void serial_echopair_P(const char *, unsigned long );
void serial_echopair_P(const char *, int );
void serial_echopair_P(const char *, long );
//
// Utility functions used by M100 to get its work done.
//
unsigned char *top_of_stack();
void prt_hex_nibble( unsigned int );
void prt_hex_byte(unsigned int );
void prt_hex_word(unsigned int );
int how_many_E5s_are_here( unsigned char *);
void gcode_M100()
{
static int m100_not_initialized=1;
unsigned char *sp, *ptr;
int i, j, n;
//
// M100 D dumps the free memory block from __brkval to the stack pointer.
// malloc() eats memory from the start of the block and the stack grows
// up from the bottom of the block. Solid 0xE5's indicate nothing has
// used that memory yet. There should not be anything but 0xE5's within
// the block of 0xE5's. If there is, that would indicate memory corruption
// probably caused by bad pointers. Any unexpected values will be flagged in
// the right hand column to help spotting them.
//
#if ENABLED(M100_FREE_MEMORY_DUMPER) // Disable to remove Dump sub-command
if ( code_seen('D') ) {
ptr = (unsigned char *) __brkval;
//
// We want to start and end the dump on a nice 16 byte boundry even though
// the values we are using are not 16 byte aligned.
//
SERIAL_ECHOPGM("\n__brkval : ");
prt_hex_word( (unsigned int) ptr );
ptr = (unsigned char *) ((unsigned long) ptr & 0xfff0);
sp = top_of_stack();
SERIAL_ECHOPGM("\nStack Pointer : ");
prt_hex_word( (unsigned int) sp );
SERIAL_ECHOPGM("\n");
sp = (unsigned char *) ((unsigned long) sp | 0x000f);
n = sp - ptr;
//
// This is the main loop of the Dump command.
//
while ( ptr < sp ) {
prt_hex_word( (unsigned int) ptr); // Print the address
SERIAL_ECHOPGM(":");
for(i=0; i<16; i++) { // and 16 data bytes
prt_hex_byte( *(ptr+i));
SERIAL_ECHOPGM(" ");
delay(2);
}
SERIAL_ECHO("|"); // now show where non 0xE5's are
for(i=0; i<16; i++) {
delay(2);
if ( *(ptr+i)==0xe5)
SERIAL_ECHOPGM(" ");
else
SERIAL_ECHOPGM("?");
}
SERIAL_ECHO("\n");
ptr += 16;
delay(2);
}
SERIAL_ECHOLNPGM("Done.\n");
return;
}
#endif
//
// M100 F requests the code to return the number of free bytes in the memory pool along with
// other vital statistics that define the memory pool.
//
if ( code_seen('F') ) {
int max_addr = (int) __brkval;
int max_cnt = 0;
int block_cnt = 0;
ptr = (unsigned char *) __brkval;
sp = top_of_stack();
n = sp - ptr;
// Scan through the range looking for the biggest block of 0xE5's we can find
for(i=0; i<n; i++) {
if ( *(ptr+i) == (unsigned char) 0xe5) {
j = how_many_E5s_are_here( (unsigned char *) ptr+i );
if ( j>8) {
SERIAL_ECHOPAIR("Found ", j );
SERIAL_ECHOPGM(" bytes free at 0x");
prt_hex_word( (int) ptr+i );
SERIAL_ECHOPGM("\n");
i += j;
block_cnt++;
}
if ( j>max_cnt) { // We don't do anything with this information yet
max_cnt = j; // but we do know where the biggest free memory block is.
max_addr = (int) ptr+i;
}
}
}
if (block_cnt>1)
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.\n");
SERIAL_ECHO("\nDone.\n");
return;
}
//
// M100 C x Corrupts x locations in the free memory pool and reports the locations of the corruption.
// This is useful to check the correctness of the M100 D and the M100 F commands.
//
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
if ( code_seen('C') ) {
int x; // x gets the # of locations to corrupt within the memory pool
x = code_value();
SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
ptr = (unsigned char *) __brkval;
SERIAL_ECHOPAIR("\n__brkval : ",(long) ptr );
ptr += 8;
sp = top_of_stack();
SERIAL_ECHOPAIR("\nStack Pointer : ",(long) sp );
SERIAL_ECHOLNPGM("\n");
n = sp - ptr - 64; // -64 just to keep us from finding interrupt activity that
// has altered the stack.
j = n / (x+1);
for(i=1; i<=x; i++) {
*(ptr+(i*j)) = i;
SERIAL_ECHO("\nCorrupting address: 0x");
prt_hex_word( (unsigned int) (ptr+(i*j)) );
}
SERIAL_ECHOLNPGM("\n");
return;
}
#endif
//
// M100 I Initializes the free memory pool so it can be watched and prints vital
// statistics that define the free memory pool.
//
if (m100_not_initialized || code_seen('I') ) { // If no sub-command is specified, the first time
SERIAL_ECHOLNPGM("Initializing free memory block.\n"); // this happens, it will Initialize.
ptr = (unsigned char *) __brkval; // Repeated M100 with no sub-command will not destroy the
SERIAL_ECHOPAIR("\n__brkval : ",(long) ptr ); // state of the initialized free memory pool.
ptr += 8;
sp = top_of_stack();
SERIAL_ECHOPAIR("\nStack Pointer : ",(long) sp );
SERIAL_ECHOLNPGM("\n");
n = sp - ptr - 64; // -64 just to keep us from finding interrupt activity that
// has altered the stack.
SERIAL_ECHO( n );
SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
for(i=0; i<n; i++)
*(ptr+i) = (unsigned char) 0xe5;
for(i=0; i<n; i++) {
if ( *(ptr+i) != (unsigned char) 0xe5 ) {
SERIAL_ECHOPAIR("? address : ", (unsigned long) ptr+i );
SERIAL_ECHOPAIR("=", *(ptr+i) );
SERIAL_ECHOLNPGM("\n");
}
}
m100_not_initialized = 0;
SERIAL_ECHOLNPGM("Done.\n");
return;
}
return;
}
// top_of_stack() returns the location of a variable on its stack frame. The value returned is above
// the stack once the function returns to the caller.
unsigned char *top_of_stack() {
unsigned char x;
return &x + 1; // x is pulled on return;
}
//
// 3 support routines to print hex numbers. We can print a nibble, byte and word
//
void prt_hex_nibble( unsigned int n )
{
if ( n <= 9 )
SERIAL_ECHO(n);
else
SERIAL_ECHO( (char) ('A'+n-10) );
delay(2);
}
void prt_hex_byte(unsigned int b)
{
prt_hex_nibble( ( b & 0xf0 ) >> 4 );
prt_hex_nibble( b & 0x0f );
}
void prt_hex_word(unsigned int w)
{
prt_hex_byte( ( w & 0xff00 ) >> 8 );
prt_hex_byte( w & 0x0ff );
}
// how_many_E5s_are_here() is a utility function to easily find out how many 0xE5's are
// at the specified location. Having this logic as a function simplifies the search code.
//
int how_many_E5s_are_here( unsigned char *p)
{
int n;
for(n=0; n<32000; n++) {
if ( *(p+n) != (unsigned char) 0xe5)
return n-1;
}
return -1;
}
#endif