72d8adfd1e
- Add `axis_t`, `extruder_t`, `heater_t`, and `fan_t` to eliminate ambiguity, improve type safety. - Regularized getter/setter argument order and naming. - `setAxisPosition` no longer stacks moves in the buffer, allowing it to be called repeatedly on each touch ui tap. - Implement better manual moves for `EXTENSIBLE_UI` (#12205) - Calling `setAxisPosition_mm` no longer buffers the entire move to the new position, but instead causes small moves towards it to be made during the idle loop. This allows the user to adjust the destination even after the move has started and makes the UI feel much more responsive. - As suggested by @ejtagle, the new code keeps the planner buffer full to ensure smooth motion without stops and starts. - Change `En`, `Hn` and `FANn` to zero-based indices. - Labels consistent with the rest of Marlin code. |
||
---|---|---|
.circleci | ||
.github | ||
buildroot | ||
docs | ||
Marlin | ||
.gitattributes | ||
.gitignore | ||
.travis.yml | ||
LICENSE | ||
platformio.ini | ||
process-palette.json | ||
README.md |
Marlin 3D Printer Firmware
Additional documentation can be found at the Marlin Home Page. Please test this firmware and let us know if it misbehaves in any way. Volunteers are standing by!
Marlin 2.0 Bugfix Branch
Not for production use. Use with caution!
Marlin 2.0 takes this popular RepRap firmware to the next level with support for much faster 32-bit processor boards.
This branch is for patches to the latest 2.0.x release version. Periodically this branch will form the basis for the next minor 2.0.x release.
Download earlier versions of Marlin on the Releases page.
Building Marlin 2.0
To build Marlin 2.0 you'll need Arduino IDE 1.9 or PlatformIO. We've posted detailed instructions on how to build Marlin 2.0 for ARM.
Hardware Abstraction Layer (HAL)
Marlin 2.0 adds a new abstraction layer so that Marlin can build and run on 32-bit boards while still retaining full 8-bit AVR compatibility. In this way, features can be enhanced for more powerful platforms while still supporting AVR, whereas splitting up the code would make it harder to maintain and keep everything in sync.
Current HALs
name | processor | speed | flash | sram | logic | fpu |
---|---|---|---|---|---|---|
Arduino AVR | ATmega, ATTiny, etc. | 16-20MHz | 64-256k | 2-8k | 5V | no |
Teensy++ 2.0 | AT90USB1286 | 16MHz | 128k | 8k | 5V | no |
Due, RAMPS-FD, etc. | SAM3X8E ARM-Cortex M3 | 84MHz | 512k | 64+32k | 3.3V | no |
Re-ARM | LPC1768 ARM-Cortex M3 | 100MHz | 512k | 32+16+16k | 3.3-5V | no |
MKS SBASE | LPC1768 ARM-Cortex M3 | 100MHz | 512k | 32+16+16k | 3.3-5V | no |
Azteeg X5 GT | LPC1769 ARM-Cortex M3 | 120MHz | 512k | 32+16+16k | 3.3-5V | no |
Selena Compact | LPC1768 ARM-Cortex M3 | 100MHz | 512k | 32+16+16k | 3.3-5V | no |
Teensy 3.5 | ARM-Cortex M4 | 120MHz | 512k | 192k | 3.3-5V | yes |
Teensy 3.6 | ARM-Cortex M4 | 180MHz | 1M | 256k | 3.3V | yes |
HALs in Development
name | processor | speed | flash | sram | logic | fpu |
---|---|---|---|---|---|---|
STEVAL-3DP001V1 | STM32F401VE Arm-Cortex M4 | 84MHz | 512k | 64+32k | 3.3-5V | yes |
Smoothieboard | LPC1769 ARM-Cortex M3 | 120MHz | 512k | 64k | 3.3-5V | no |
Submitting Patches
Proposed patches should be submitted as a Pull Request against the (bugfix-2.0.x) branch.
- This branch is for fixing bugs and integrating any new features for the duration of the Marlin 2.0.x life-cycle.
- Follow the Coding Standards to gain points with the maintainers.
- Please submit your questions and concerns to the Issue Queue.
RepRap.org Wiki Page
Credits
The current Marlin dev team consists of:
- Roxanne Neufeld [@Roxy-3D] - English
- Scott Lahteine [@thinkyhead] - English
- Bob Kuhn [@Bob-the-Kuhn] - English
- Chris Pepper [@p3p] - English
- João Brazio [@jbrazio] - Portuguese, English
License
Marlin is published under the GPL license because we believe in open development. The GPL comes with both rights and obligations. Whether you use Marlin firmware as the driver for your open or closed-source product, you must keep Marlin open, and you must provide your compatible Marlin source code to end users upon request. The most straightforward way to comply with the Marlin license is to make a fork of Marlin on Github, perform your modifications, and direct users to your modified fork.
While we can't prevent the use of this code in products (3D printers, CNC, etc.) that are closed source or crippled by a patent, we would prefer that you choose another firmware or, better yet, make your own.