Marlin/Marlin/temperature.h
2016-11-03 23:31:45 -05:00

462 lines
13 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* temperature.h - temperature controller
*/
#ifndef TEMPERATURE_H
#define TEMPERATURE_H
#include "planner.h"
#include "thermistortables.h"
#include "MarlinConfig.h"
#if ENABLED(PID_EXTRUSION_SCALING)
#include "stepper.h"
#endif
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
#if HOTENDS == 1
#define HOTEND_LOOP() const int8_t e = 0;
#define HOTEND_INDEX 0
#define EXTRUDER_IDX 0
#else
#define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
#define HOTEND_INDEX e
#define EXTRUDER_IDX active_extruder
#endif
class Temperature {
public:
static float current_temperature[HOTENDS],
current_temperature_bed;
static int current_temperature_raw[HOTENDS],
target_temperature[HOTENDS],
current_temperature_bed_raw,
target_temperature_bed;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static float redundant_temperature;
#endif
static uint8_t soft_pwm_bed;
#if ENABLED(FAN_SOFT_PWM)
static uint8_t fanSpeedSoftPwm[FAN_COUNT];
#endif
#if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
#if ENABLED(PID_EXTRUSION_SCALING)
static float Kc[HOTENDS];
#endif
#define PID_PARAM(param, h) Temperature::param[h]
#else
static float Kp, Ki, Kd;
#if ENABLED(PID_EXTRUSION_SCALING)
static float Kc;
#endif
#define PID_PARAM(param, h) Temperature::param
#endif // PID_PARAMS_PER_HOTEND
// Apply the scale factors to the PID values
#define scalePID_i(i) ( (i) * PID_dT )
#define unscalePID_i(i) ( (i) / PID_dT )
#define scalePID_d(d) ( (d) / PID_dT )
#define unscalePID_d(d) ( (d) * PID_dT )
#endif
#if ENABLED(PIDTEMPBED)
static float bedKp, bedKi, bedKd;
#endif
#if ENABLED(BABYSTEPPING)
static volatile int babystepsTodo[3];
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
static int watch_target_temp[HOTENDS];
static millis_t watch_heater_next_ms[HOTENDS];
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
static int watch_target_bed_temp;
static millis_t watch_bed_next_ms;
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
static bool allow_cold_extrude;
static float extrude_min_temp;
static bool tooColdToExtrude(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
}
#else
static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
#endif
private:
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static int redundant_temperature_raw;
static float redundant_temperature;
#endif
static volatile bool temp_meas_ready;
#if ENABLED(PIDTEMP)
static float temp_iState[HOTENDS],
temp_dState[HOTENDS],
pTerm[HOTENDS],
iTerm[HOTENDS],
dTerm[HOTENDS];
#if ENABLED(PID_EXTRUSION_SCALING)
static float cTerm[HOTENDS];
static long last_e_position;
static long lpq[LPQ_MAX_LEN];
static int lpq_ptr;
#endif
static float pid_error[HOTENDS];
static bool pid_reset[HOTENDS];
#endif
#if ENABLED(PIDTEMPBED)
static float temp_iState_bed,
temp_dState_bed,
pTerm_bed,
iTerm_bed,
dTerm_bed,
pid_error_bed;
#else
static millis_t next_bed_check_ms;
#endif
static unsigned long raw_temp_value[4],
raw_temp_bed_value;
// Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[HOTENDS],
maxttemp_raw[HOTENDS],
minttemp[HOTENDS],
maxttemp[HOTENDS];
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
static int consecutive_low_temperature_error[HOTENDS];
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
static unsigned long preheat_end_time[HOTENDS];
#endif
#ifdef BED_MINTEMP
static int bed_minttemp_raw;
#endif
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static int meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN
static millis_t next_auto_fan_check_ms;
#endif
static uint8_t soft_pwm[HOTENDS];
#if ENABLED(FAN_SOFT_PWM)
static uint8_t soft_pwm_fan[FAN_COUNT];
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static int current_raw_filwidth; //Holds measured filament diameter - one extruder only
#endif
public:
/**
* Instance Methods
*/
Temperature();
void init();
/**
* Static (class) methods
*/
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
/**
* Called from the Temperature ISR
*/
static void isr();
/**
* Call periodically to manage heaters
*/
static void manage_heater();
/**
* Preheating hotends
*/
#ifdef MILLISECONDS_PREHEAT_TIME
static bool is_preheating(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
}
static void start_preheat_time(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
}
static void reset_preheat_time(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
preheat_end_time[HOTEND_INDEX] = 0;
}
#else
#define is_preheating(n) (false)
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static float analog2widthFil(); // Convert raw Filament Width to millimeters
static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
static float degHotend(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return current_temperature[HOTEND_INDEX];
}
static float degBed() { return current_temperature_bed; }
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static float rawHotendTemp(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return current_temperature_raw[HOTEND_INDEX];
}
static float rawBedTemp() { return current_temperature_bed_raw; }
#endif
static float degTargetHotend(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return target_temperature[HOTEND_INDEX];
}
static float degTargetBed() { return target_temperature_bed; }
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
static void start_watching_heater(uint8_t e = 0);
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
static void start_watching_bed();
#endif
static void setTargetHotend(const float& celsius, uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
if (celsius == 0.0f)
reset_preheat_time(HOTEND_INDEX);
else if (target_temperature[HOTEND_INDEX] == 0.0f)
start_preheat_time(HOTEND_INDEX);
#endif
target_temperature[HOTEND_INDEX] = celsius;
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
start_watching_heater(HOTEND_INDEX);
#endif
}
static void setTargetBed(const float& celsius) {
target_temperature_bed = celsius;
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
start_watching_bed();
#endif
}
static bool isHeatingHotend(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
}
static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
static bool isCoolingHotend(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
}
static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
/**
* The software PWM power for a heater
*/
static int getHeaterPower(int heater);
/**
* Switch off all heaters, set all target temperatures to 0
*/
static void disable_all_heaters();
/**
* Perform auto-tuning for hotend or bed in response to M303
*/
#if HAS_PID_HEATING
static void PID_autotune(float temp, int hotend, int ncycles, bool set_result=false);
#endif
/**
* Update the temp manager when PID values change
*/
static void updatePID();
#if ENABLED(AUTOTEMP)
static void autotempShutdown() {
if (planner.autotemp_enabled) {
planner.autotemp_enabled = false;
if (degTargetHotend(EXTRUDER_IDX) > planner.autotemp_min)
setTargetHotend(0, EXTRUDER_IDX);
}
}
#endif
#if ENABLED(BABYSTEPPING)
static void babystep_axis(const AxisEnum axis, const int distance) {
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
#if ENABLED(BABYSTEP_XY)
switch (axis) {
case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
babystepsTodo[CORE_AXIS_1] += distance * 2;
babystepsTodo[CORE_AXIS_2] += distance * 2;
break;
case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
babystepsTodo[CORE_AXIS_1] += distance * 2;
babystepsTodo[CORE_AXIS_2] -= distance * 2;
break;
case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
babystepsTodo[NORMAL_AXIS] += distance;
break;
}
#elif ENABLED(COREXZ) || ENABLED(COREYZ)
// Only Z stepping needs to be handled here
babystepsTodo[CORE_AXIS_1] += distance * 2;
babystepsTodo[CORE_AXIS_2] -= distance * 2;
#else
babystepsTodo[Z_AXIS] += distance;
#endif
#else
babystepsTodo[axis] += distance;
#endif
}
#endif // BABYSTEPPING
private:
static void set_current_temp_raw();
static void updateTemperaturesFromRawValues();
#if ENABLED(HEATER_0_USES_MAX6675)
static int read_max6675();
#endif
static void checkExtruderAutoFans();
static float get_pid_output(int e);
#if ENABLED(PIDTEMPBED)
static float get_pid_output_bed();
#endif
static void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
static void min_temp_error(int8_t e);
static void max_temp_error(int8_t e);
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
static TRState thermal_runaway_state_machine[HOTENDS];
static millis_t thermal_runaway_timer[HOTENDS];
#endif
#if HAS_THERMALLY_PROTECTED_BED
static TRState thermal_runaway_bed_state_machine;
static millis_t thermal_runaway_bed_timer;
#endif
#endif // THERMAL_PROTECTION
};
extern Temperature thermalManager;
#endif // TEMPERATURE_H